# Chapter 11: Software and Calculations
#
#
# The function Orbit(G,x) will compute the orbit of x under the
# permutation group or
# linear group G. Here x is a positive natural number or a vector. For
# example,
#
> A5 := Group( [[1, 2, 3]] , [[3, 4, 5]] ):
#
# So the orbit of 2 under A5 can be computed by
#
> Orbit( A5, 2);
{1, 2, 3, 4, 5}
#
# Similarly, if you set
#
> ChoosePrime(5);
5
#
# and take
#
> F20 := Group( L([[1, 1], [0, 1]]) , L([[2, 0], [0, 3]]) ):
#
# then the orbit of the vector (2,3) is
#
> Orbit( F20, [2,3] );
{[3, 1], [0, 1], [1, 2], [0, 3], [2, 2], [3, 2], [2, 1], [4, 1],
[1, 4], [4, 2], [0, 4], [1, 1], [4, 3], [2, 3], [3, 4],
[3, 3], [4, 4], [0, 2], [2, 4], [1, 3]}
#
# (see exercise 4.4). Stabilizer[G,x] will compute the stabilizer of x
# in the group G . So for example
#
> Elements( Stabilizer( A5, 3 ) );
{[], [[1, 4, 5]], [[2, 4, 5]], [[1, 2], [4, 5]], [[1, 5, 4]],
[[1, 2, 5]], [[1, 2, 4]], [[2, 5, 4]], [[1, 4], [2, 5]],
[[1, 4, 2]], [[1, 5, 2]], [[1, 5], [2, 4]]}
#
# The conjugacy class of an element can be calculated with the function
# ConjugacyClass. Let's use it to compute the conjugacy classes in A5.
# To begin, we know that the conjugacy classes in S5 correspond to the
# cycle types of permutations of degree 5. The even cycle types are
#
# {1}, {2,2}, {5}, {3} .
#
# The function CycleTypes computes the number of permutations in each
# cycle type:
#
> CycleTypes( Elements(A5) );
[[] [2, 2] [5] [3]]
[ ]
[1 15 24 20 ]
#
# Now two elements in A5 may be conjugate by an element in S5 but not by
# an element in A5. So a conjugacy class of S5 may break up into more
# than one conjugacy class in A5. We begin with a 3-cycle:
#
> ConjugacyClass( A5, [[1, 2, 3]] );
{[[1, 4, 5]], [[3, 5, 4]], [[2, 4, 5]], [[1, 5, 4]], [[1, 2, 5]],
[[1, 2, 4]], [[1, 3, 4]], [[1, 3, 5]], [[2, 5, 4]],
[[2, 3, 5]], [[1, 4, 2]], [[1, 5, 2]], [[3, 4, 5]],
[[1, 2, 3]], [[1, 3, 2]], [[2, 3, 4]], [[2, 5, 3]],
[[1, 5, 3]], [[2, 4, 3]], [[1, 4, 3]]}
#
# These are all 20 3-cycles. Next we look at the conjugacy class of a
# 5-cycle:
#
> ConjugacyClass( A5, [[1, 2, 3, 4, 5]] );
{[[1, 5, 4, 3, 2]], [[1, 2, 4, 5, 3]], [[1, 3, 2, 5, 4]],
[[1, 4, 5, 2, 3]], [[1, 4, 3, 5, 2]], [[1, 5, 2, 4, 3]],
[[1, 3, 5, 4, 2]], [[1, 2, 5, 3, 4]], [[1, 5, 3, 2, 4]],
[[1, 4, 2, 3, 5]], [[1, 3, 4, 2, 5]], [[1, 2, 3, 4, 5]]}
#
# This is only half of the 5-cycles! One that is missing is (1 2 3 5 4)
# . So let's compute its conjugacy class:
#
> ConjugacyClass( A5, [[1, 2, 3, 5, 4]] );
{[[1, 4, 5, 3, 2]], [[1, 4, 2, 5, 3]], [[1, 2, 5, 4, 3]],
[[1, 3, 2, 4, 5]], [[1, 2, 4, 3, 5]], [[1, 3, 4, 5, 2]],
[[1, 2, 3, 5, 4]], [[1, 4, 3, 2, 5]], [[1, 3, 5, 2, 4]],
[[1, 5, 2, 3, 4]], [[1, 5, 4, 2, 3]], [[1, 5, 3, 4, 2]]}
#
# These are the remaining 5-cycles. Lastly we look at the conjugacy
# class of a product of two transpositions:
#
> ConjugacyClass( A5, [[1, 2], [3, 4]] );
{[[1, 5], [3, 4]], [[1, 3], [4, 5]], [[2, 3], [4, 5]],
[[1, 2], [4, 5]], [[1, 3], [2, 4]], [[2, 5], [3, 4]],
[[1, 5], [2, 3]], [[1, 3], [2, 5]], [[1, 4], [2, 5]],
[[1, 4], [2, 3]], [[1, 4], [3, 5]], [[2, 4], [3, 5]],
[[1, 5], [2, 4]], [[1, 2], [3, 5]], [[1, 2], [3, 4]]}
#
# These are all 15 permutations of type {2, 2}. So these four sets
# together with {(1)} are the conjugacy classes of A5.
#
# The centre of a group can be computed with the function Centre .
# For example,
#
> D4 := Group( [[1, 2, 3, 4]], [[1, 3]] ):
#
# and
#
> Elements( Centre(D4) );
{[], [[1, 3], [2, 4]]}
#
# For a matrix in GL(2,F(p)) the corresponding fracional linear
# transformation is computed by the function FLTPermutation. Let's
# repeat the calculation of
#
# f : GL(2, F(3)) -> S4
#
# using this function.
#
> ChoosePrime(3);
3
> a := L([[2, 1], [0, 1]]);
a := [[[2, 1], [0, 1]], 3]
> b := L([[2,2],[0,1]]);
b := [[[2, 2], [0, 1]], 3]
> c := L([[0,1],[1,0]]);
c := [[[0, 1], [1, 0]], 3]
> FLTPermutation(a);
[[0, 1]]
> FLTPermutation(b);
[[0, 2]]
> FLTPermutation(c);
[[0, infinity]]
Wyszukiwarka
Podobne podstrony:
Worksheet Long lasting hobby ans2001 07 Gimp Workshop Photograph ReprocessingEABA Vehicles Worksheeteim1 worksheeteim1 worksheetChristmas Picture Gap Fill WorksheetWorksheet Grammar revisiondiphthongs oi worksheetcox interception worksheet 2008EASA Workshop Standardsworksheet 7 first conditionalFate Core Game Creation WorksheetChap807 Chen GCEP Workshopeim1 worksheetwięcej podobnych podstron