worksheets chap8


# Chapter 11: Software and Calculations # # # The function Orbit(G,x) will compute the orbit of x under the # permutation group or # linear group G. Here x is a positive natural number or a vector. For # example, # > A5 := Group( [[1, 2, 3]] , [[3, 4, 5]] ): # # So the orbit of 2 under A5 can be computed by # > Orbit( A5, 2); {1, 2, 3, 4, 5} # # Similarly, if you set # > ChoosePrime(5); 5 # # and take # > F20 := Group( L([[1, 1], [0, 1]]) , L([[2, 0], [0, 3]]) ): # # then the orbit of the vector (2,3) is # > Orbit( F20, [2,3] ); {[3, 1], [0, 1], [1, 2], [0, 3], [2, 2], [3, 2], [2, 1], [4, 1], [1, 4], [4, 2], [0, 4], [1, 1], [4, 3], [2, 3], [3, 4], [3, 3], [4, 4], [0, 2], [2, 4], [1, 3]} # # (see exercise 4.4). Stabilizer[G,x] will compute the stabilizer of x # in the group G . So for example # > Elements( Stabilizer( A5, 3 ) ); {[], [[1, 4, 5]], [[2, 4, 5]], [[1, 2], [4, 5]], [[1, 5, 4]], [[1, 2, 5]], [[1, 2, 4]], [[2, 5, 4]], [[1, 4], [2, 5]], [[1, 4, 2]], [[1, 5, 2]], [[1, 5], [2, 4]]} # # The conjugacy class of an element can be calculated with the function # ConjugacyClass. Let's use it to compute the conjugacy classes in A5. # To begin, we know that the conjugacy classes in S5 correspond to the # cycle types of permutations of degree 5. The even cycle types are # # {1}, {2,2}, {5}, {3} . # # The function CycleTypes computes the number of permutations in each # cycle type: # > CycleTypes( Elements(A5) ); [[] [2, 2] [5] [3]] [ ] [1 15 24 20 ] # # Now two elements in A5 may be conjugate by an element in S5 but not by # an element in A5. So a conjugacy class of S5 may break up into more # than one conjugacy class in A5. We begin with a 3-cycle: # > ConjugacyClass( A5, [[1, 2, 3]] ); {[[1, 4, 5]], [[3, 5, 4]], [[2, 4, 5]], [[1, 5, 4]], [[1, 2, 5]], [[1, 2, 4]], [[1, 3, 4]], [[1, 3, 5]], [[2, 5, 4]], [[2, 3, 5]], [[1, 4, 2]], [[1, 5, 2]], [[3, 4, 5]], [[1, 2, 3]], [[1, 3, 2]], [[2, 3, 4]], [[2, 5, 3]], [[1, 5, 3]], [[2, 4, 3]], [[1, 4, 3]]} # # These are all 20 3-cycles. Next we look at the conjugacy class of a # 5-cycle: # > ConjugacyClass( A5, [[1, 2, 3, 4, 5]] ); {[[1, 5, 4, 3, 2]], [[1, 2, 4, 5, 3]], [[1, 3, 2, 5, 4]], [[1, 4, 5, 2, 3]], [[1, 4, 3, 5, 2]], [[1, 5, 2, 4, 3]], [[1, 3, 5, 4, 2]], [[1, 2, 5, 3, 4]], [[1, 5, 3, 2, 4]], [[1, 4, 2, 3, 5]], [[1, 3, 4, 2, 5]], [[1, 2, 3, 4, 5]]} # # This is only half of the 5-cycles! One that is missing is (1 2 3 5 4) # . So let's compute its conjugacy class: # > ConjugacyClass( A5, [[1, 2, 3, 5, 4]] ); {[[1, 4, 5, 3, 2]], [[1, 4, 2, 5, 3]], [[1, 2, 5, 4, 3]], [[1, 3, 2, 4, 5]], [[1, 2, 4, 3, 5]], [[1, 3, 4, 5, 2]], [[1, 2, 3, 5, 4]], [[1, 4, 3, 2, 5]], [[1, 3, 5, 2, 4]], [[1, 5, 2, 3, 4]], [[1, 5, 4, 2, 3]], [[1, 5, 3, 4, 2]]} # # These are the remaining 5-cycles. Lastly we look at the conjugacy # class of a product of two transpositions: # > ConjugacyClass( A5, [[1, 2], [3, 4]] ); {[[1, 5], [3, 4]], [[1, 3], [4, 5]], [[2, 3], [4, 5]], [[1, 2], [4, 5]], [[1, 3], [2, 4]], [[2, 5], [3, 4]], [[1, 5], [2, 3]], [[1, 3], [2, 5]], [[1, 4], [2, 5]], [[1, 4], [2, 3]], [[1, 4], [3, 5]], [[2, 4], [3, 5]], [[1, 5], [2, 4]], [[1, 2], [3, 5]], [[1, 2], [3, 4]]} # # These are all 15 permutations of type {2, 2}. So these four sets # together with {(1)} are the conjugacy classes of A5. # # The centre of a group can be computed with the function Centre . # For example, # > D4 := Group( [[1, 2, 3, 4]], [[1, 3]] ): # # and # > Elements( Centre(D4) ); {[], [[1, 3], [2, 4]]} # # For a matrix in GL(2,F(p)) the corresponding fracional linear # transformation is computed by the function FLTPermutation. Let's # repeat the calculation of # # f : GL(2, F(3)) -> S4 # # using this function. # > ChoosePrime(3); 3 > a := L([[2, 1], [0, 1]]); a := [[[2, 1], [0, 1]], 3] > b := L([[2,2],[0,1]]); b := [[[2, 2], [0, 1]], 3] > c := L([[0,1],[1,0]]); c := [[[0, 1], [1, 0]], 3] > FLTPermutation(a); [[0, 1]] > FLTPermutation(b); [[0, 2]] > FLTPermutation(c); [[0, infinity]]

Wyszukiwarka

Podobne podstrony:
Worksheet Long lasting hobby ans
2001 07 Gimp Workshop Photograph Reprocessing
EABA Vehicles Worksheet
eim1 worksheet
eim1 worksheet
Christmas Picture Gap Fill Worksheet
Worksheet Grammar revision
diphthongs oi worksheet
cox interception worksheet 2008
EASA Workshop Standards
worksheet 7 first conditional
Fate Core Game Creation Worksheet
Chap8
07 Chen GCEP Workshop
eim1 worksheet

więcej podobnych podstron