n n2 n " N n n+1 T (n) n " N n e" n0 n0 n0 = 0 T (1), T (2), T (3), T (4), ... T (n0), T (n0 + 1), T (n0 + 2), T (n0 + 3), ... n " N T (1), T (n), ... T (1) n T (n) T (n + 1) T (n) =Ò! T (n + 1), n " N T (n) T (1), T (2), ... T (n) T (2) T (2) T (3) T (3) T (4) n T (n) n n2 n2 12 n2 (n + 1)2 L = 1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = 1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n2 + 2n + 1 = (n + 1)2 = P "n e" 1 n n2 n " N n
n(n + 1) i = 2 i=1 n(n+1) 2 T (n) T (1) 1
1(1 + 1) i = = 1, 2 i=1 n
n(n + 1) i = 2 i=1 n+1
(n + 1)(n + 2) i = . 2 i=1 n+1 n
n(n + 1) L = i = i + (n + 1) = + n + 1 2 i=1 i=1 n(n + 1) + 2(n + 1) (n + 1)(n + 2) = = 2 2 = P
n k = 0, ..., n
n n! = . k k!(n - k)!
n n! = . k k!(n - k)! 1 1 1! = 1 = 1. = 1 0 1 0!(1-0)! 1! = 1, 1!(1-1)! n n! = k k!(n-k)! n+1 (n+1)! = k k!(n-k+1)! n+1 k
n + 1 n n n! n! = + = + k k - 1 k (k - 1)!(n - k + 1)! k!(n - k)! n!(n - k + 1) + n!k = k!(n - k + 1)! k! = (k - 1)!k (n - k + 1)! = (n - k + 1)!(n - k) n!(n - k + 1 + k) n!(n + 1) = = k!(n - k + 1)! k!(n - k + 1)! (n + 1)! = k!(n - k + 1)!
T (1), T (2), ... T (1), T (2), ... T (1), T (2), ..., T (1), T (n), ... T (1) n " N n T (1), T (2), ..., T (n) T (n + 1) T (1), T (2), ..., T (n) =Ò! T (n + 1), n " N T (n) T (1), T (2), T (3), ... T (1) T (2), T (1), T (2) T (3) T (1), T (2), T (3) T (4), n T (n) n T (1), ..., T (n) A ‚" N, A = " =Ò! "n0 " A "n " A n e" n0
an a1 = A, a2 = 2A an+1 = 2an - an-1 A, n " Z a1 = A a2 = 2A an-1 = A(n - 1), an = nA an+1 = A(n + 1) an an+1 = 2an - an-1 = 2(nA) - A(n - 1) = = 2nA - (nA - A) = 2nA - nA + A = A(n + 1) > 0 an n n n + 1 n n + 1 n n + 1 n