Ćw 6 Badanie przetworników siły


LABORATORIUM PODSTAW METROLOGII M-T
Ćwiczenie nr 6
BADANIE PRZETWORNIKÓW SIAY
Program ćwiczenia obejmuje badania przetworników dwojakiego rodzaju:
tensometrycznego i magnetosprężystego. Ze względu na znaczące różnice w zasadzie
działania oraz właściwościach instrukcję sporządzono w dwóch częściach.
1.1 Cel badania przetwornika tensometrycznego
Celem tej części ćwiczenia jest wyznaczenie błędów przemysłowego
tensometrycznego czujnika siły skupionej spowodowanych nie osiowym przyłożeniem siły
mierzonej do czujnika.
W ćwiczeniu laboratoryjnym badany jest czujnik siły nacisku z elementem
sprężystym w kształcie ramki (jak na rys. 2a). Stanowisko zapewnia możliwość
przeniesienia siły rozciągającej na czujnik badany poprzez odpowiednie zaczepy.
Dodatkowo konstrukcja mocowania przetwornika badanego umożliwia przyłożenie siły
pod pewnymi kątami względem osi zapewniając niezmienność warunków pracy
przetwornika wzorcowego. Należy wyznaczyć błędy pomiaru siły przyłożonej ukośnie do
czujnika przy różnych kątach przyłożenia siły.
1.2 Wprowadzenie
Właściwości metrologiczne czujnika siły zależą przede wszystkim od parametrów
elementu sprężystego czujnika. Elementy sprężyste czujników siły mogą mieć różne
kształty. Najczęściej są one wykonane ze stali sprężystej w kształcie wydrążonego lub
pełnego walca albo w kształcie ramki. Elementy walcowe zwykle stosuje się w czujnikach
do pomiaru dużych sił ze względu na dużą wytrzymałość mechaniczną. Rozkład naprężeń
oraz odkształceń w takich elementach zilustrowano na rys.1.
a) b) c) d)
Fx
Fx
Fx
Fx
+"l
-"l
+x b -x b
-y
+y
+x
-x
2
2
1
Fx Fx 1
Fx
Fx
Rys.1. Odkształcenia elementu sprężystego spowodowane siłą: a)  ściskającą,
b)  rozciągającą ; x, y  naprężenia odpowiednio wzdłużne i poprzeczne,
c), d)  sposób umieszczenia tensometru 2 na badanym obiekcie 1.
Elementy sprężyste w kształcie ramek charakteryzują się większą niż walcowe
czułością odkształceniową gdyż ich ściany boczne z naklejonymi tensometrami mogą być
jednocześnie ściskane lub rozciągane oraz zginane. Na rys.2 pokazano szkic budowy
czujnika z elementem sprężystym w kształcie ramki prostokątnej (stosowane są także
ramki sześciokątne i pierścieniowe). Na rysunku tym zaznaczono wektory sił działających
na ramkę w przypadku ukośnego przyłożenia do niej mierzonej siły, pokazano także
schemat połączeń tensometrów naklejonych na ścianach bocznych ramki (rys.2 b).
MT 2011 ćw. 6 Badanie przetworników siły 1
x
a) b)
F
ą
Fx a
RT1 RT2
RT3 Fz
z
y U
b
lk
RT4 RT3
RT4
RT2 RT1 UM
Rys.2. a)  Szkic konstrukcji tensometrycznego czujnika siły,
b)  układ połączeń tensometrów.
Jeśli czujnik jak na rys.2 a jest obciążony siłą osiową (w kierunku osi x) to ściany
boczne ramki odkształcają się jednakowo. W przypadku osiowej siły rozciągającej
kolumny (boczne ściany) ramki są rozciągane jednakowymi siłami oraz zginane takim
samym momentem gnącym. W wyniku tego ich powierzchnie odkształcają się w sposób
jak pokazano na rys.1 a,b. Wypadkowe odkształcenie tych ścian można oszacować metodą
superpozycji naprężeń. Dla konstrukcji czujnika jak na rys.2 można przyjąć, że jeśli siła
działa osiowo (F = Fx) to czułość odkształceniowa ramki jest jednakowa dla siły
ściskającej i rozciągającej. W przypadku ukośnego przyłożenia siły do czujnika (rys.2 a)
na ramkę działa składowa osiowa siły F x oraz składowa ortogonalna F z. Składowa
ortogonalna działająca w kierunku osi z wytwarza dodatkowy moment gnący w kolumnach
ramki. Biorąc pod uwagę konstrukcję ramki można stwierdzić, że największy wpływ
momentu gnącego na napięcie sygnału czujnika UM ma miejsce wtedy, gdy siła ukośna
działa w płaszczyznie xy . Działanie siły ukośnej w płaszczyznie xy wywołuje praktycznie
taki sam jak poprzednio moment gnący lecz jego działanie nie wpływa na napięcie sygnału
czujnika UM. W celu uproszczenia rozważań przyjmuje się, że na wypadkowe wydłużenia
tensometrów składają się jednakowe dla obu kolumn odkształcenia wywołane składową
osiową F x mierzonej siły F oraz równe co do wartości lecz o przeciwnych znakach
2
Fz
odkształcenia wywołane działaniem momentów gnących M = x ; x "(0,...,lk ) .
g
2
Sygnał z czujnika w postaci napięcia UM wynosi:
# ś#
RT1 RT 2
ś# ź#
U = U - (1).
M
ś#
RT1 + RT 4 RT 2 + RT 3 ź#
# #
Po podstawieniu w zależności (1) w miejsce rezystancji tensometrów RT1,...,RT4
związków:
RT1 = RT + "R1 , RT 2 = RT + "R2 , RT 3 = RT + "R3 , RT 4 = RT + "R4
i pominięciu wyrazów zawierających iloczyny przyrostów rezystancji tensometrów
"R1,...,"R4 otrzymuje się:
U "R1 - "R2 + "R3 - "R4
U H" " (2).
M
2 2RT + "R1 + "R2 + "R3 + "R4
Jeśli czujnik jest rozciągany siłą osiową Fx = F to przyrosty rezystancji
tensometrów są równe odpowiednio:
2 2
"R1 = "R3 =  " K " RT oraz "R2 = "R4 = - " " K " RT (3)
gdzie K  stała tensometru,
RT  rezystancja tensometru bez odkształceń,
  wydłużenie względne tensometru
 liczba Poissona (dla stali H" 0,3).
MT 2011 ćw. 6 Badanie przetworników siły 2
Po uwzględnieniu w zależności (2) zależności (3) otrzymuje się napięcie wyjściowe
czujnika obciążonego siłą osiową:
K "U " 1+
U H" " (4).
M
2 1+ K " "(1- )
w przypadku ukośnie przyłożonej siły F jak na rys.2 a na wydłużenie tensometrów
składa się wydłużenie wywołane składową osiową siły Fx oraz wydłużenie spowodowane
Fz
momentem gnącym M H" " lk działającym na każdą z kolumn w wyniku istnienia
g
2
składowej poprzecznej siły Fz . W tej sytuacji na ramkę działają siły:
Fx = F" cosą oraz Fz = F" siną.
Wypadkowe wydłużenia kolumn ramki  można przedstawić w postaci sumy:
2 2 2
 =  +  (5)
gdzie  - wydłużenie względne wywołane składową osiową siły Fx ,
  - wydłużenie względne wywołane działaniem na kolumny momentów
gnących pochodzących od składowej ortogonalnej siły Fz.
2 2 2
Jeśli przyjąć  =  cosą oraz  = kz Fz = kz F siną
przy czym kz  współczynnik zależny od konstrukcji czujnika, to dla przyrostów
rezystancji "R tensometrów przy ukośnie przyłożonej sile do czujnika można napisać:
2 2
"R12 = K " RT ( " cosą +  )
2 2
"R2 = K " RT (- " " cosą + " )
2 2
"R32 = K " RT ( " cosą -  )
2 2
"R42 = K " RT (- " " cosą - " ) (6).
Po uwzględnieniu związków (6) w zależności (4) otrzymuje się przy ukośnym
przyłożeniu siły do czujnika zależność na napięcie wyjściowe UM. :
K "U " (1+ )" cosą
2
U = " (7).
M
2 1+ K " "(1- )" cosą
Na podstawie zależności (7) można wyznaczyć względny błąd pomiaru siły F przy
skośnym jej przyłożeniu do czujnika:
2
U - U cosą-1
M M
 = H" (8).
F
U 1+ K  (1- )cosą
M
Przykład: Siła osiowa F wywołuje wydłużenie względne  = 10-4 tensometru
naklejonego na kolumnie ramki ( = 0,3). Przy K = 2 i sile F działającej w płaszczyznie xz
odchylonej od kierunku normalnego o kąt ą = 10 błąd pomiaru wynosi ok.  1,5 %,
w tych samych warunkach lecz przy odchyleniu o kąt ą = 30 błąd pomiaru wzrośnie
do ok.  13,4 %.
1.3 Stanowisko laboratoryjne do badania tensometrycznego czujników siły
Na rys.3 przedstawiono szkic stanowiska laboratoryjnego do badania czujników siły.
W ćwiczeniu laboratoryjnym bada się przemysłowy czujnik tensometryczny siły nacisku,
który przystosowano do pomiaru sił rozciągających. Badany czujnik 1 przymocowany jest
podstawą do belki z rzędem równooddalonych otworów. Jego kulisty trzpień naciskowy
zamieniono na zaczep i połączono poprzez cięgno przegubowe 3 z suportem 4. Pokrętłem
MT 2011 ćw. 6 Badanie przetworników siły 3
5 przesuwa się suport ustalając wymaganą wartość siły naciągu F. Kąt przyłożenia siły do
czujnika ą ustala się wybierając odpowiedni otwór w belce 2 przez, który przewleka się
sworzeń uchwytu przy podstawie maszyny. Wartość siły naciągu F odczytuje się na
cyfrowym polu odczytowym procesora wagowego.
Rys.3. Szkic stanowiska laboratoryjnego do badania czujników siły; 1- badany czujnik, 2-
belka otworami, 3- cięgno przegubowe, 4- suport z siłomierzem, 5- pokrętło do
zadawania siły naciągu F , 6- procesor wagowy, 7- zasilacz i wzmacniacz napięcia
mostka tensometrycznego.
Przed rozpoczęciem pomiarów należy pokrętłem 5 ustalić minimalny początkowy naciąg
przy, którym nie występują luzy w połączeniach przegubowych. Badanie czujnika 1
przeprowadza się w dwóch etapach. W pierwszym etapie badany czujnik mocuje się
symetrycznie tak, aby siła F była osiowo przyłożona do czujnika. W drugim etapie
wyznacza się charakterystyki kierunkowe czyli zależność sygnału wyjściowego czujnika
UM od przyłożonej do czujnika siły F przy różnych kątach przyłożenia. siły do czujnika:
w = f (F) (9)
ą =const
gdzie w = SM U - wskazanie ;
M
SM  czułość miernika [N/V] (określona nastawami toru pomiarowego na 1kN/V)
W ćwiczeniu laboratoryjnym bada się czujnik tensometryczny zbudowany w sposób
pokazany na rys.2. Uwaga! Nie ma możliwości obrotu czujnika w płaszczyznie yz ,
należy przyjąć że, ramka czujnika zorientowana jest tak jak na rys.2. Badania czujnika
można przeprowadzić w ten sposób, że po kalibracji przyrządów i zdjęciu charakterystyki
(9) przy osiowym działaniu siły dla każdego kąta przyłożenia mierzonej siły nastawia się
pokrętłem 5 maszyny wytrzymałościowej wartości siły według wskazań procesora
wagowego 6. Kąt przyłożenia siły ą wyznacza się z zależności:
a
# ś#
ą = arctg (10)
ś# ź#
h
# #
gdzie a  odległość sworznia mocującego w belce 2 od otworu środkowego,
h  wysokość czujnika (rys.4)
1.4 Pytania kontrolne
1. Co to jest czułość odkształceniowa tensometru?
2. Podać zależności dla stałej tensometru drutowego oraz dla foliowego.
MT 2011 ćw. 6 Badanie przetworników siły 4
3. Czy liczba Poissona dla konstrukcji czujnika jest zawsze taka sama jak dla tensometru?
Podać wyjaśnienie.
4. Dlaczego w czujnikach siły nacisku zakończenie trzpienia pomiarowego w miejscu
przyłożenia siły ma kształt kulisty ?
1.5 Program ćwiczenia
1. Dokonać identyfikacji przyrządów pomiarowych na stanowisku laboratoryjnym
(rys.3) (zwrócić uwagę na nastawy)
2. Odczytać z tabliczki znamionowej badanego czujnika jego parametry.
3. Zamocować badany czujnik osiowo.
Uruchomić stanowisko pomiarowe i sprawdzić stan wyzerowania przyrządów 6 i 7
(w razie niezgodności wskazań zerowych zgłosić problem prowadzącemu).
Uwaga! Przed wykonywaniem pomiarów sprawdzić nastawy przyrządów  istnieje
możliwość uszkodzenia badanego czujnika i elementów jego zamocowania.
Zmierzyć charakterystykę w = f F pamiętając iż wskazanie maksymalne
( )
ą =0
procesora wagowego 6 wynosi około 3.9 kN.
4. Zmierzyć charakterystyki w = f (F) dla wszystkich możliwych nastaw
ą =const
kątów przyłożenia siły ą.
5. Wyznaczyć dla tych kątów charakterystyki błędów czujnika F = f (F) | ą= const.
6. Wyznaczyć charakterystyki błędów czujnika F = f (ą ) | F = const.
7. Sporządzić wykresy zbadanych zależności.
8. Wnioski z pomiarów.
2.1 BADANIE MAGNETOSPRŻYSTEGO CZUJNIKA SIAY
2.2 Cel ćwiczenia
Celem tej części ćwiczenia jest poznanie zasady działania, budowy oraz pomiar
charakterystyk statycznych magnetosprężystego czujnika siły. Ponadto należy wyznaczyć
na podstawie zmierzonych charakterystyk podstawowe właściwości metrologiczne
badanego czujnika.
2.3 Wprowadzenie
Właściwości magnetyczne materiałów ferromagnetycznych zależą od budowy jego
elementarnych siatek krystalicznych, ich orientacji względem zewnętrznego pola
magnetycznego oraz względem kierunku działania naprężeń mechanicznych. Ponadto
zależą one od stopnia i rodzaju deformacji elementarnych kryształów materiału. W skali
makroskopowej w wielu materiałach ferromagnetycznych przy stałym natężeniu pola
magnetycznego H można zaobserwować zmianę całkowitej indukcji magnetycznej B pod
wpływem zmiany naprężenia (efekt Villari'ego). Można to wyjaśnić na gruncie teorii
domen P. Weiss'a, według której każdy materiał ferromagnetyczny w skali mikroskopowej
składa się z domen magnetycznych, w których atomy tworzą przestrzenne siatki
krystaliczne wykazując momenty magnetyczne (niezerowy wektor magnetyzacji J  każda
z domen stanowi jakby miniaturowy magnes). Domeny magnetyczne ułożone są tak w
sieci krystalicznej, że przy braku zewnętrznego pola magnetycznego materiał nie
wykazuje cech magnetycznych. Oznacza to, że wektory magnetyzacji domen mają różne
kierunki. Ponieważ linie sił pola magnetycznego domen muszą być ciągłe i zamknięte,
domeny o przeciwnych wektorach magnetyzacji są rozdzielone warstwą domen
MT 2011 ćw. 6 Badanie przetworników siły 5
tworzących tzw.  ścianę Blocha tak ułożonych, że kolejne domeny mają wektory
magnetyzacji obrócone o niewielki kąt w ten sposób, że po przeciwnych stronach tej
warstwy wektory magnetyzacji są zgodne
z wektorami domen zewnętrznych jak pokazano na rys.4.
Wielkość domen zależy od
Ściana Blocha
stosunku energii wymiany do energii
J
N
N
wewnętrznej pojedynczego kryształu
N
N
sieci krystalicznej ferromagnetyka.
N
N
Wymiary liniowe domen w żelazie są
N
N
J
rzędu 10m. Grubość ściany Blocha
Moment magnetyczny
S
S zależy od stałej anizotropii, odległości
J spinu elektronowego
S
S
siatkowych oraz temperatury Curie
S materiału. Grubość ścian Blocha dla
S
S
J
żelaza wynosi (2,5 3,5)m.
S
W obecności zewnętrznego pola
magnetycznego następuje proces
porządkowania domen poprzez ich
Rys.4. Orientacja wektorów magnetyzacji
obrót oraz przesuwanie ścian Blocha
wewnątrz ściany Blocha.
tak, że wraz ze wzrostem natężenia pola
rośnie liczba domen , których wektory magnetyzacji są zgodne z kierunkiem pola. Proces
magnesowania ferromagnetyka (porządkowania domen) wymaga wykonania pracy
związanej z przemieszczaniem domen oraz pokonania sił międzycząsteczkowych. Energia
zużywana na magnesowanie ferromagnetyka zależy od budowy i orientacji kryształów
oraz domen magnetycznych w jego sieci krystalicznej. Jeśli w wyniku naprężeń
mechanicznych wektory magnetyzacji zostaną chociaż częściowo uporządkowane to
proces magnesowania będzie przebiegał łatwiej co uwidoczni się zewnętrznie większymi
przyrostami indukcji magnetycznej B przy zmianach pola magnetycznego H. Niektóre
materiały wykazują wzrost przenikalności przy ściskaniu (określa się je jako materiały o
dodatniej magnetostrykcji), inne zaś zmniejszają wtedy przenikalność magnetyczną
(materiały o ujemnej magnetostrykcji). Na przykład żelazo wykazuje magnetostrykcję
dodatnią, a nikiel magnetostrykcję ujemną. Wynika stąd, że charakterystyka
magnesowania B = f(H) takich materiałów zależy od naprężeń mechanicznych. Na rys.6
przedstawiono w sposób poglądowy początkową fazę procesu magnesowania materiału
ferromagnetycznego.
J

B
B' H

J0
0
ą0 H
I1
Ś '
U1
U2
Ferromagnetyk
Rys.5. Zasada wykorzystania magnetostrykcji w pomiarach sił i naprężeń mechanicznych.
MT 2011 ćw. 6 Badanie przetworników siły 6
B
- odwracalne procesy obrotów domen
Bmax
Br
- nieodwracalne skokowe przesuwanie
ścian domen - skoki Barkhausena"
"
- odwracalne procesy przesuwania ścian
domen - ścian Blocha"
"
-Hk
+Hmax H
0
- kierunki osi krystalicznych
- materiał
nienamagnesowany
H - kierunek pola magnetycznego
Rys.6. Procesy magnesowania ferromagnetyka oraz odpowiadające im zakresy krzywej
magnesowania B = f(H).
Zarówno zmiany anizotropowych właściwości magnetycznych ferromagnetyka jak
i zmiany przebiegu jego charakterystyki magnesowania można wykorzystywać
w pomiarach takich wielkości mechanicznych, które wywołują naprężenia mechaniczne
w ferromagnetycznym rdzeniu czujnika. Na rys.7 pokazano szkice konstrukcji czujników
siły skupionej działające według zasady przedstawionej na rys.5. Konstrukcja
przedstawiona na rys.7 a wykonana jest z walcowanych blach transformatorowych z
otworami, przez które przewleczone są dwa wzajemnie prostopadłe uzwojenia I i II.
Kształtki rdzenia zwykle są tak wycięte z arkusza blachy w taki sposób, aby wzajemnie
prostopadłe płaszczyzny uzwojeń I i II były odchylone od kierunku walcowania o kąt ł =
45. Wtedy zachodzą relacje pomiędzy jego parametrami magnetycznymi i mierzoną siłą
F takie jak pokazano na rys.5.
F
a) b)
F
Ś1
1
3
Ś1'
2
I1
I1
I
II
U1 U2
U2
U1
Ś2
Ś3
Ś3'
Rys.7. Szkice konstrukcji czujników siły działających według zasady przedstawionej na
rys.5; a) czujnik z rdzeniem z blach transformatorowych sklejonych, b) czujnik
kolumnowy z rdzeniem wykonanym z litego materiału.
W przetworniku kolumnowym (rys.7b) na przeciwległych kolumnach nawinięte są
uzwojenia połączone tak, aby strumienie magnetyczne kolumnach 2 i 4 wytwarzane
przez uzwojenia kolumn 1 i 3 były przeciwne. Jeśli rdzeń przetwornika wykonany jest
tak, że jego kolumny są zorientowane pod kątem do kierunku walcowania to przy (F = 0
!  = 0) jest Ś2 = Ś4 = Ś1 - Ś3 = 0 stąd wynika U2 = 0.
MT 2011 ćw. 6 Badanie przetworników siły 7
W praktyce warunek ten nie jest spełniony (zwykle ł `" 45), stąd napięcie wyjściowe
U2 `" 0 przy F = 0.
Wykorzystywanie magnetostrykcji do pomiaru siły wymaga spełnienia jednocześnie
następujących warunków:
" wykonanie rdzenia przetwornika z materiału charakteryzującego się anizotropią
magnetyczną,
" wywołanie naprężeń mechanicznych w rdzeniu w wyniku działania mierzonej siły,
" poddanie rdzenia działaniu zewnętrznego pola magnetycznego,
" detekcja zmian właściwości magnetycznych rdzenia (strumienia magnetycznego,
przenikalności magnetycznej, strat magnetycznych itd.) wywołanych mierzoną siłą.
Detekcję zmian strumienia magnetycznego realizuje się za pomocą odpowiednio
nawiniętego na rdzeniu uzwojenia mierząc zmiany indukowanego w nim napięcia
(w przypadku stałej siły oraz stałego pola magnetycznego nie indukuje się napięcie,
można wówczas wykonać szczelinę w rdzeniu i umieścić w nie czujnik hallotronowy  ten
przypadek rzadko wykorzystywany jest w praktyce).
Najistotniejszym elementem każdego przetwornika siły jest element sprężysty
ulegający odkształceniu w wyniku siły mierzonej. W przetworniku magnetosprężystym
tym elementem jest rdzeń ferromagnetyczny, który odkształcając się zmienia swoje
właściwości magnetyczne. Rzeczywiste przetworniki siły mogą mieć różne konstrukcje
oraz różne kształty rdzenia ferromagnetycznego na przykład takie jak na rys.7 albo
prostsze kształty (pierścień lub ramka). Konstrukcje przetworników oraz układy
pomiarowe w, których one pracują są determinowane przede wszystkim wybraną do
detekcji wielkością wyjściową (np. napięcie, prąd, moc strat magnetycznych,
indukcyjność). Przetworniki magnetosprężyste zwykle pracują w prostych układach
pomiarowych w, których realizowane są zależności:
1; U = f (F) , 2; U = f (F) , 3; U = f (F) ,
2 B=const 2 H =const 2 U ,Z =const
4; "P,I1 = f (F) , 5; "P,U1 = f (F) , 6; "P,U1 ,I1 = f (F) .
B=const H =const U ,Z =const
Na rys.3.20 przedstawiono w sposób poglądowy zmiany charakterystyki
magnesowania rdzenia oraz punktu pracy P przetwornika magnetosprężystego
spowodowane zmianą mierzonej siły w różnych warunkach pracy przetwornika.
Z przebiegu charakterystyk pokazanych na rysunku wynika, że w przypadku pomiaru
napięcia wyjściowego (U2) korzystna jest praca przetwornika przy stałej wartości pola
magnetycznego (rys.9 a) jeśli zaś wielkością detekcyjną jest prąd magnesujący (I1) albo
moc strat na magnesowanie "P korzystna jest praca przetwornika przy stałej wartości
indukcji (rys.9 b). W praktyce realna jest sytuacja jak na rys.9 c.
MT 2011 ćw. 6 Badanie przetworników siły 8
B P2
a) b)
B
B2
P2 BM = const
HM = const
B1
BM
P1
P1
F1< F2 F1< F2
+Br
+Br
0 0
H2 H1 H HM H
-Br
-Br
B
c)
P2
B2
B1
P1
F1< F2
+Br
0
H2 H1 H
-Br
Rys.8. Przesunięcie punktu pracy przetwornika magnetosprężystego) spowodowane
działaniem siły w warunkach ; a)  wymuszenia napięciowego, b) 
wymuszenia prądowego, c)  przy zasilaniu z rzeczywistego zródła; liniami
przerywanymi obszary zaznaczono fragmenty pętli histerezy.
Przebiegi charakterystyk przedstawione na rys.8 wykreślono przy założeniu stałej
wartości indukcji remanentu magnetycznego Br.
Na rys.9 przedstawiono podstawowe układy pracy przetworników
magnetosprężystych.
a)
F
Z I1
U1 z1 z2 U2 V
U, f
yródło
zasilania Przetwornik
magnetosprężysty
b)
F
Z I1
A
U1 z1
U, f
yródło
zasilania Przetwornik
magnetosprężysty
c)
F
I1
Tr.
GS W
m.cz.
U1 z1 z2 U2 U2'
U, f
variab.
Przetwornik
magnetosprężysty
Rys.9. Podstawowe układy pomiarowe magnetosprężystych czujników siły; a)  układ
transformatorowy, b)  układ dławikowy, c)  układ do pomiaru strat
magnetycznych ; Tr  transformator podwyższający napięcie.
Z zasady działania magnetosprężystego przetwornika siły oraz z przebiegu
charakterystyk rdzenia ferromagnetycznego przedstawionych na rys.8 wynikają wnioski:
" materiał rdzenia przetwornika magnetosprężystego powinien mieć dużą przenikalność
magnetyczną oraz duża wartość współczynnika magnetostrykcji s,
" materiał rdzenia powinien mieć wąską pętlę histerezy (mała energia krystaliczna 
pozwala to uzyskiwać dużą czułość odkształceniową),
" kierunek działania naprężeń od mierzonych wielkości mechanicznych powinien
z kierunkiem łatwego magnesowania (kierunkiem największych przenikalności
magnetycznych) tworzyć kąt 45,
MT 2011 ćw. 6 Badanie przetworników siły 9
" korzystne są konstrukcje przetwornika takie jak na rys.7, których sygnałem
wyjściowym jest napięcie różnicowe (przy F = 0 ! U2 H" 0),
" ze względu na znaczną nieliniowość charakterystyki magnesowania rdzenia korzystnie
jest mierzyć napięcie jednej harmonicznej napięcia wyjściowego najlepiej
podstawowej.
Przetworniki magnetosprężyste charakteryzują się dużą czułością, prostotą
konstrukcji, dużą wytrzymałością mechaniczną, szerokim zakresem pomiarowym oraz
małą wrażliwością na zakłócenia elektryczne. Należy zwrócić uwagę na fakt, że
właściwości elektryczne i magnetyczne ciała zależą w istotny sposób od temperatury.
Wzrost temperatury powoduje wzrost entropii sieci krystalicznej materiału rdzenia
(zmniejszenie stopnia uporządkowania sieci krystalicznej) przejawiający się
zmniejszeniem się przenikalności magnetycznej. Różne ferromagnetyki mają różne
energie kryształów sieci z czego wynikają różne temperatury (temperatury Curie) przy,
których następuje zmiana rodzaju sieci krystalicznej w wyniku czego gwałtownie maleje
przenikalność magnetyczna. W praktyce przetworniki magnetosprężyste najczęściej
pracują w układzie pomiarowym jak na rys. 9 a. Przebieg typowej charakterystyki
przetwarzania przetwornika pracującego w tym układzie pokazano na rys.10.
U2
U , Z, f = const.
F
0
[N]
Rys.10. Przykładowa charakterystyka przetwornika magnetosprężystego pracującego
w układzie jak na rys.9 a.
Z zasady działania magnetosprężystego przetwornika siły wynika, że wielkością
wyjściową może być nie tylko napięcie U2 na zaciskach wtórnych (przetwornik
w układzie transformatorowym  rys.9 a) ale również prąd zasilania I1 (przetwornik
w układzie dławikowym lub transformatorowym bez uzwojenia wtórnego  rys.9 b),
napięcie U1 na zaciskach pierwotnych jeśli przetwornik zasilany jest ze zródła prądowego
(I1 = const.), moc strat magnetycznych "P, indukcyjność własna L uzwojenia itd.
Należy zwrócić uwagę na fakt, że krzywe magnesowania są zależnościami
nieliniowymi, co oznacza, że w przetworniku następuje odkształcenie sygnału
wyjściowego. Jeżeli zródło zasilające jest sinusoidalne to prąd pierwotny i napięcie wtórne
mają przebiegi odkształcone. Miarą wielkości wyjściowej może być wartość skuteczna
(RMS) , wartość średnia przebiegu wyprostowanego (AVG) względnie wartość szczytowa
harmonicznej przebiegu (najczęściej pierwszej).
Przebieg charakterystyki wyjściowej przetwornika magnetosprężystego zależy od
budowy i konstrukcji jego obwodu magnetycznego:
" budowa i kształt rdzenia (rdzeń sklejany z blach, lity, ferrytowy)
" usytuowanie uzwojeń w przestrzeni rdzenia (wzajemna orientacja przestrzenna
strumienia magnetycznego i naprężeń w rdzeniu)
" parametry zródła zasilania (napięcie U, częstotliwość f, impedancja wewnętrzna Z)
" rodzaj i miara wielkości wyjściowej (np. U1, U2, I1)
" temperatura otoczenia rdzenia oraz jego temperatura Curie
MT 2011 ćw. 6 Badanie przetworników siły 10
" impedancja toru pomiarowego obciążająca przetwornik
Wrażliwość rdzenia magnetycznego na czynniki zakłócające zwłaszcza na
temperaturę sprawia że, przetworniki magnetosprężyste mają niezbyt dużą dokładność
(jednak często wystarczającą w pomiarach przemysłowych). Mają one jednak wiele zalet
takich jak: prosta konstrukcja mechaniczna i elektryczna oraz niską cenę, znaczny poziom
sygnału wyjściowego i duży możliwy do osiągnięcia stosunek mierzonej siły do objętości
rdzenia (wymiarów gabarytowych).
Przetworniki magnetosprężyste wykorzystywane są najczęściej w czujnikach sił
(sił nacisku, sił rozciągających momentów skręcających. Zwykle są one zasilane ze zródła
napięcia sinusoidalnego o odpowiednio dobranych parametrach (zwykle jest to zródło
o częstotliwości sieciowej f = 50Hz, rzadziej generator sinusoidalny małej częstotliwości).
W pomiarach przemysłowych nie wykorzystuje się układu pomiarowego jak na rys.9
c gdyż wymaga on stosowania watomierza o małym współczynniku mocy oraz niskim
napięciu zakresowym. Ze względu na znormalizowane zakresy napięciowe watomierzy
zwykle oznacza to konieczność zastosowania transformatora podwyższającego napięcie.
Pomiaru mocy strat magnetycznych przetwornika magnetosprężystego można także
dokonywać za pomocą przetwornika hallotronowego. Wówczas jednak układ pomiarowy
jest bardziej złożony, wrażliwy na zakłócenia oraz droższy w realizacji
2.4 Układ pomiarowy do badania czujników magnetosprężystych
W ćwiczeniu laboratoryjnym bada się czujnik magnetosprężysty siły nacisku
z przetwornikiem o konstrukcji jak na rys.7 a. Badany czujnik jest obciążany siłą skupioną
za pomocą podwójnej dzwigni dwuramiennej jak na rys.11. Siłę F działającą na badany
czujnik ustala się za pomocą odważników, które umieszcza się na szalce podwieszonej na
ramieniu dzwigni. Wartość tej siły można określić na podstawie masy odważników oraz
współczynnika przełożenia dzwigni kF:
l1 l4
F = kF Q = " " m g .
l2 l3
l1 l2
F
Dzwignia
Czujnik badany
m
l3 l4
Odważnik
Q = mg
Rys.11. Układ mechaniczny z podwójną dzwignią dwuramienną do badania czujników
siły nacisku.
F
I1
AVG RMS
A FPP
GS
V3
U1 z1
m.cz. z2 U2 V1 V2
U, f
variab.
R
Przetwornik
2
+"U dt Filtr pasmowo-
magnetosprężysty
-przepustowy
Osc-XY
Rys.12. Układ elektryczny do badania magnetosprężystych przetworników siły.
MT 2011 ćw. 6 Badanie przetworników siły 11
Dzwignia wykorzystywana na stanowisku laboratoryjnym ma współczynnik
przełożenia kF = 10.
Na rys.12 przedstawiono schemat elektryczny układu pomiarowego do badania
przetworników magnetosprężystych pracujących w układzie transformatorowym.
Na stanowisku laboratoryjnym można wyznaczać charakterystyki magnesowania
rdzenia badanego przetwornika przy różnych siłach nacisku w postaci zależności
U = f (I1) i charakterystyki przetwarzania U2 = f (F ) oraz
2 F =const U , f =const
I1 = f (F) przy różnych częstotliwościach napięcia zasilania. Ponadto za pomocą
U , f =const
oscyloskopu pracującego w trybie XY można obserwować zmiany krzywej magnesowania
oraz wyznaczyć na podstawie pomiaru parametrów obserwowanej pętli histerezy
zależności parametrów magnetycznych rdzenia badanego przetwornika od siły nacisku
(np. zależności; = f(F), "P = f(F)). Z pomiaru charakterystyk magnesowania można
także wyznaczyć prąd i napięcie zasilania przy, którym przetwornik magnetosprężysty ma
największą czułość. Z charakterystyk przetwarzania można wyznaczyć napięcie zasilania
U lub prąd zasilania I1 przy, którym zakres pomiarowy przetwornika jest najszerszy zaś
nieliniowość najmniejsza. Ponadto można określić miarę wartości wyjściowej pozwalającą
uzyskać najbardziej liniową charakterystykę przetwarzania. W ćwiczeniu laboratoryjnym
bada się magnetosprężysty czujnik siły nacisku typu PM-150 o dopuszczalnych
granicznych parametrach:
" maksymalne obciążenie Fmax = 1500 N,
" dopuszczalny prąd zasilania I1max (wartość skuteczna) = 0,3 A,
" zakres częstotliwości zasilania : f = 50 ... 500 Hz
2.5 Program ćwiczenia
1. Dokonać identyfikacji przyrządów pomiarowych oraz sprawdzić ich nastawione
parametry (rodzaj mierzonej wielkości, zakresy pomiarowe).
2. Sprawdzić poprawność przyłożenia siły nacisku do badanego czujnika.
3. Zmierzyć charakterystyki czujnika U = f (I1) przy różnej ilości n
2 F =const
ciężarków na szalce (n = 0,1,2,...) przy częstotliwości f = 50 Hz.
Uwaga! Przeprowadzić pomiary przy rosnącej i malejącej liczbie ciężarków.
Wyznaczyć histerezę charakterystyki przetwarzania.
4. Na podstawie zmierzonych charakterystyk w p.3 charakterystyki czułości:
dU "U dI1 "I1
2 2
SU = H" oraz. SI = H"
I1 =const I1 =const U =const U =const
dF "F dF "F
5. Zmierzyć charakterystyki przetwarzania U2 = f (F) (wartości prądu
I1=const
zasilania I1 lub napięcia zasilania U podane przez prowadzącego ćwiczenie).
6. Na podstawie zmierzonych w p.5 charakterystyk wyznaczyć błędy nieliniowości
dla nominalnego zakresu mierzonych sił.
7. Zmierzyć charakterystyki jak w p.5 przy podanych przez prowadzącego
częstotliwościach napięcia zasilania.
8. Wyznaczyć oraz sporządzić wykres zależności = f(F) , "P = f(F)
9. Sporządzić wykresy zmierzonych i obliczonych charakterystyk czujnika.
10. Wyznaczyć charakterystyczne wartości charakterystyki przetwarzania (graniczne
wartości błędu nieliniowości i czułości obliczonych wg p.4)
MT 2011 ćw. 6 Badanie przetworników siły 12


Wyszukiwarka