I podejscie projektowe 1 kombinacja

A1+M1+R1

Zadane w projekcie

V :=

k

570kN

H :=

k

42kN

M :=

k

48kNm

Q

:=

1k

530kN

Q

:=

2k

50kN

Q

:=

3k

43kNm

s :=

rozpiętość fundamentu

1

2.42m

h

:=

szer slupa

al

0.6m

s :=

Przerwa przy slupie

a

0.06m

kN

Gr := 20.5

ciezar gruntu

3

m

H

:=

wys. posadzki

pos

0.15m

H

:=

poziom posadzki

pos1

1m

h

:=

zaglebienie fundamentu

cal

2.15m

t := 0.3m

h :=

f

1m

B := 0.7m

L := 1.1m

e :=

b

0

Z tabelki

ϕ' := 21.6 ⋅deg

C' := 39.04kPa

kN

γ'

:=

miazszosc gruntu

mi

19.688

3

m

kN

γ' := 11.57

do obliczenia q' ze wzoru z tabeli 3

m

kN

γ := (21.0843)

ciezar gruntu

3

m

Z normy

γ

z normy A1 stale niekorzystne

Gnk

γ

:=

Gnk

1.35

γ

z normy A1 stale korzystne

Gk

γ

:=

Gk

1

γ

z normy A1 zmienne niekorzystne Qnk

γ

:=

Qnk

1.5

γ

z normy A1 zmienne korzystne

Qk

γ

:=

Qk

0

γ

z tabelki z normy M1

ϕ'

γ

:=

ϕ'

1

γ

:=

C'

1

γ

z tabelki z normy R1

Rv

γ

:=

Rv

1

γ

z tabelki z normy R1

Rh

γ

:=

Rh

1

ϕ' :=

( ⋅

)

1

atan γϕ' tan(ϕ')

ϕ' =

1

0.377

Ciezar podloza dzialajacego na fundament kN

G :=

⋅ + (

+ ⋅ )⋅( − ) +



( − )⋅( − )

⋅

1

t L

hal 2 sa hf t

hf t s1 sa 25

B

3

m

G =

1

43.505 kN

G := (

−

)⋅ +



( − )⋅ ⋅( − ) ⋅ ⋅

2

hcal hf s1

hf t .5 s1 sa  B Gr

G =

2

51.789 kN

G := (

−

−

−

)⋅ +



( − )⋅ ⋅( − ) ⋅ ⋅

3

hcal Hpos1 Hpos hf s1

s1 sa .5 hf t  B Gr

G =

3

11.853 kN

G :=

⋅ ⋅

kN ⋅

4

Hpos s1 25

B

3

m

G =

4

6.353 kN





S := (

−

)⋅ ⋅ ⋅ + ⋅( − )⋅( − )⋅ ( −



) 2

⋅

2

hcal hf s1 .5 s1 .5 hf t s1 sa s1 sa





3

3

S =

2

4.667 m





S := (

−

−

−

)⋅ ⋅ ⋅ + ⋅( − )⋅( − )⋅ ( −



) 2⋅

3

hcal Hpos1 Hpos hf s1 .5 s1 .5 hf t s1 sa s1 sa





3

3

S =

3

1.3 m

F := (

−

)⋅ + ⋅( − )⋅( − )

2

hcal hf s1 .5 s1 sa hf t

2

F =

2

3.609 m

F := (

−

−

−

)⋅ + ( − )⋅( − )

3

hcal Hpos Hpos1 hf s1

s1 sa hf t

2

F =

3

1.652 m

Promienie na ktorych dziala ciezar podloza r :=

1

0

r :=

⋅

4

.5 s1

S2

r :=

⋅

+

2

.5 hal

F2

r =

4

1.21 m

r =

2

1.593 m

S2

r :=

+

3

.5hal

F2

r =

3

1.593 m

Obciazenia stale V :=

⋅

+

( +

+

+

)

d

γGnk Vk γGnk G1 G2 G3 G4

V =

d

922.725 kN

H :=

⋅

d

γGnk Hk

H =

d

56.7 kN

M :=

⋅

+

⋅

⋅

+

(− ⋅ + ⋅ + ⋅ )

d

γGnk Mk γGnk Hk hf γGnk G2 r2 G3 r3 G4 r4

M =

d

45.984 kN·m

1 Mimosrud

Md

e :=

l

Vd

L

e =

=

l

0.05 m

0.183 m

6

L

warunek

e ≤

=

l

1

6

spełniony

2 Naprezenia

V

⋅

d

Vd

6 e



l 

σ

:=

⋅( + ⋅ ÷ )

:=

⋅ −



dmax

1

6 el L

σdmin

1

L ⋅B

L ⋅B 

L 

3

σ

=

×

=

dmax

1.524

10 kPa

σdmin 872.602 kPa

σ

σ

warunek

dmax

dmax

= 1.747

wynik

≤ 3 = 1

spełniony

σdmin

σdmin

3. Efektywne pole podstawy fundamentu B' := B − 2 ⋅eb

B' = 0.7 m

L' := L − 2 ⋅el

L' = 1 m

A' := B'⋅L'

2

A' = 0.7 m

N - wspolczynniki podloza π γ

⋅



ϕ'



ϕ'

ϕ





ϕ' tan( ϕ')

1

1

N :=

⋅

 +

 ⋅

⋅

 +



q

e

tan 45

γ

tan 45



ϕ

2 

'



2 

N =

q

23.814

N :=

( − )⋅

⋅

γ

2 Nq 1 tan(ϕ') γϕ'

N

=

γ

18.066

N := (

− )

1

⋅

c

Nq 1 tan(ϕ') γϕ'

N =

c

57.622

b - wspolczynnik nachylenia podstawy fundamentu α := 0

b := ( − ⋅

⋅

)

q

1

α tan(ϕ') γϕ'

b =

q

1

b :=

γ

bq

b

=

γ

1

1 − bq

b :=

−

c

bq

N ⋅

⋅

c tan(ϕ') γϕ'

b =

c

1

s - wspolczynnik ksztaltu podstawy fundamentu B'

 

S :=

+

⋅

( )

q

1

  sin ϕ'



1

L' 

S =

q

1.258

B'

 

S :=

−

γ

1

.3



 L'

S

=

γ

0.79

(S ⋅ − )

q Nq

1

S :=

c

(N − )

q

1

S =

c

1.269

i -- wspolczynnik wplywu nachylenia wypadkowej obciazen L'

2 + B'

m :=

l

L'

1 + B'

m =

l

1.412

m



l

Hd



i := 

−



q

1



1



V +

⋅

⋅ ⋅

d

A' γC' C'



tan(ϕ') ⋅γ





ϕ' 

i =

q

0.92

m +



l 1

Hd



i := 

−



γ

1



1



V +

⋅

⋅ ⋅

d

A' γC' C'



tan(ϕ') ⋅γ





ϕ' 

i

=

γ

0.868

1 + iq

i :=

−

c

iq

N ⋅

⋅

c tan(ϕ') γϕ'

i =

c

0.836

q' - naprezenia w podlozu

D ---- zagłębienie fundamentu D := 2.15 ⋅m

q' := D⋅γ'

q' = 24.875 kPa

R :=

⋅( ⋅

⋅

⋅ ⋅ ⋅ +

⋅

⋅

⋅

⋅

+

⋅

⋅ ⋅

⋅

⋅

⋅ )

k

A' C' γC' Nc bc Sc ic q' Nq bq Sq iq .5 γ'mi L' Nγ bγ Sγ iγ

3

R =

×

k

2.237

10 kN

Rk

R :=

d

γRv

3

R =

×

=

d

2.237

10 kN

Vd 922.725 kN

warunek

R ≥

=

d

Vd 1

spełniony

Vd

N :=

⋅100

Rd

N = 41.255

Wykorzystanie fundamentu wynosi N = 41.255 %

Warunek na przesuniec ie fundamentu Obciazenia stale

V :=

⋅

+

( +

+

+

)

d

γGk Vk γGk G1 G2 G3 G4

V =

d

683.5 kN

H :=

⋅

d

γGnk Hk

H =

d

56.7 kN

M :=

⋅

+

⋅

⋅

+

(− ⋅ + ⋅ + ⋅ )

d

γGnk Mk γGnk Hk hf γGk G2 r2 G3 r3 G4 r4

M =

d

65.562 kN·m

I przesuniecie fundamentu w poziomie grunt- beton V =

d

683.5 kN

μ := 0.35

z normy PN-B_03010 tabela 3

z kolumny chropowata na podstawie kata tarcia wewnetrznego

R

:=

⋅

hk

Vd μ

R

=

hk

239.225 kN

Rhk

R

:=

hd

γRh

R

=

=

hd

239.225 kN

Hd 56.7 kN

warunek

R

>

=

hd

Hd 1

spełniony

II Przesuniecie w gruncie pod fundamentem R

:=

⋅

⋅

+

⋅ ⋅ ⋅

hk

Vd tan(ϕ') γϕ' γC' C' L B

R

=

hk

300.677 kN

Rhk

R

:=

hd

γRh

R

=

=

hd

300.677 kN

Hd 56.7 kN

warunek

R

>

=

hd

Hd 1

spełniony

h := 2.7m

gr. spoisty

h

h ≤ B = 0

b :=

=

1

b

4

1

0.675 m

h

h > B = 1

b :=

=

2

b

3

2

0.9 m

gr. niespoisty

h

h ≤ B = 0

b :=

=

3

b

3

3

0.9 m

2h

h > B = 1

b :=

=

4

b

3

4

0.667

Wybieramy b odpowiednia dla nas dla gruntu na wysokosci 2B

L :=

+

1

L

b1

L =

1

1.775 m

B :=

+

1

B

b1

B =

1

1.375 m

γ' :=

1

6.87

γ' :=

2

10.39

γ' :=

3

10.3

γ'5

średnia ważona gruntu pod fundamentem (γ' +

+

)

1

γ'2 γ'3 kN

γ' :=

5

3

3

m

G :=

⋅

⋅ ⋅

5

L1 B1 h γ'5

G =

5

60.537 kN

V :=

⋅

+

( +

+

+

+

)

d

γGk Vk γGk G1 G2 G3 G4 G5

V =

d

744.037 kN

H :=

⋅

d

γGnk Hk

H =

d

56.7 kN

M :=

⋅

+

⋅

⋅

+

(− ⋅ + ⋅ + ⋅ ) + ⋅ ⋅

d

γGnk Mk γGnk Hk hf γGk G2 r2 G3 r3 G4 r4

Hd h γGk

M =

d

218.652 kN·m

e :=

b

0

Md

e :=

l

Vd

L1 = 0.296m

e =

l

0.294 m

6

L

warunek

1

e ≤

=

l

1

spełniony

6

Naprezenia

Naprezenia

B' := B −

⋅

1

2 eb

B' = 1.375 m

L' := L −

⋅

1

2 el

L' = 1.187 m

V

⋅

d

Vd

6 e



l 

σ

:=

⋅( + ⋅ ÷ )

:=

⋅ −



dmax

1

6 el L'

σdmin

1

L'⋅B'

L'⋅B' 

L' 

3

σ

=

×

=

dmax

1.133

10 kPa

σdmin

221.112

−

kPa

σ

σ

warunek

σdmax

σ

=

dmax

5.123

−

wynik

≤ 3 = 1 spełniony

σdmin

σdmin

− 3

3

N = 1 × 10

kN kN := 10 N kN = 1 kN

kNm := 1kN⋅1m

1

1

= 1

2

2

m

m

3

N

10 kN

Pa = 1 ⋅

MPa :=

° := deg

kPa = 1 kPa

2

2

m

1m

Obciazenia zmienne V

:=

⋅

+

⋅(

+

+

+

) +

⋅

1d

γGnk Vk γGnk G1 G2 G3 G4

γQnk Q1k

3

V

=

×

1d

1.718

10 kN

H

:=

⋅

+

⋅

1d

γGnk Hk γQnk Q2k

H

=

1d

131.7 kN

M

:=

⋅

+

⋅

⋅

+

(− ⋅ + ⋅ + ⋅ ) ...

1d

γGnk Mk γGnk Hk hf γGnk G2 r2 G3 r3 G4 r4

+ γ

⋅

+

⋅

⋅

Qnk Q3k

γQnk Q2k hf

M

=

1d

185.484 kN·m

1 Mimosrud

M1d

e

:=

1l

V1d

L

e

=

=

1l

0.108 m

0.183 m

6

L

warunek

e

≤

=

1l

1

6

spełniony

2 Naprezenia

V

⋅

1d

V1d

6 e



1l 

σ

:=

⋅( + ⋅

÷ )

:=

⋅ −



d1max

1

6 e1l L

σd1min

1

L ⋅B

L ⋅B 

L



3

σ

=

×

=

d1max

3.545

10 kPa

σd1min 916.876 kPa

σ

warunek

d1max = 3.866

spelniony

σd1min

3. Efektywne pole podstawy fundamentu B' :=

− ⋅

1

B

2 eb

B' =

1

0.7 m

L' :=

− ⋅

1

L

2 e1l

L' =

1

0.884 m

A' :=

⋅

1

B'1 L'1

2

A' =

1

0.619 m

N - wspolczynniki podloza π⋅ γ

⋅



ϕ'



ϕ'

ϕ





ϕ' tan( ϕ')

1

1

N

:=

⋅

 +

 ⋅

⋅

 +



1q

e

tan 45

γ

tan 45



ϕ

2 

'



2 

N

=

1q

23.814

N

:= (

− )⋅

⋅

1γ

2 N1q 1 tan(ϕ') γϕ'

N

=

1γ

18.066

N

:= (

− )

1

⋅

1c

N1q 1 tan(ϕ')⋅γϕ'

N

=

1c

57.622

b - wspolczynnik nachylenia podstawy fundamentu α := 0

b

:= ( − ⋅

⋅

)

1q

1

α tan(ϕ') γϕ'

b

=

1q

1

b

:=

1γ

b1q

b

=

1γ

1

1 − b1q

b

:=

−

1c

b1q

N

⋅

⋅

1c tan(ϕ') γϕ'

b

=

1c

1

s - wspolczynnik ksztaltu podstawy fundamentu B'

 1 

S

:=

+

⋅

( )

1q

1



 sin ϕ'1

L'

 1 

S

=

1q

1.291

B'

 1 

S

:=

−

1γ

1

.3



L'

 1 

S

=

1γ

0.762

(S ⋅

− )

1q N1q

1

S

:=

1c

(N − )

1q

1

S

=

1c

1.304

i -- wspolczynnik wplywu nachylenia wypadkowej obciazen L'1

2 + B'1

m

:=

l1

L'1

1 + B'1

m

=

l1

1.442

m



l1

H1d



i

:=  −



1q

1



1



V

+

⋅

⋅ ⋅

1d

A'1 γC' C'



tan(ϕ') ⋅γ





ϕ' 

i

=

1q

0.895

m +



l1 1

H1d



i

:=  −



1γ

1



1



V

+

⋅

⋅ ⋅

1d

A'1 γC' C'



tan(ϕ') ⋅γ





ϕ' 

i

=

1γ

0.829

1 + i1q

i

:=

−

1c

i1q

N ⋅

c tan(ϕ') γϕ'

i

=

1c

0.812

R

:=

⋅( ⋅

⋅

⋅

⋅

⋅

+

⋅

⋅

⋅

⋅

+

⋅

⋅ ⋅

⋅

⋅

⋅

)

1k

A'1 C' γC' N1c b1c S1c i1c q' N1q b1q S1q i1q .5 γ'mi L' N1γ b1γ S1γ i1γ

3

R

=

×

1k

1.968

10 kN

R1k

R

:=

1d

γRv

3

3

R

=

×

=

×

1d

1.968

10 kN

V1d 1.718 10 kN

R

≥

=

1d

V1d 1

warunek

spełniony

V1d

N :=

⋅

1

100

R1d

N =

1

87.304

Wykorzystanie fundamentu wynosi N =

1

87.304%

Warunek na przesuniec ie fundamentu Obciazenia zmienne

V

:=

⋅

+

⋅(

+

+

+

) +

⋅

1d

γGk Vk γGk G1 G2 G3 G4

γQk Q1k

V

=

1d

683.5 kN

H

:=

⋅

+

⋅

1d

γGnk Hk γQnk Q2k

H

=

1d

131.7 kN

M

:=

⋅

+

⋅

⋅

+

(− ⋅ + ⋅ + ⋅ ) +

⋅

...

1d

γGnk Mk γGnk Hk hf γGk G2 r2 G3 r3 G4 r4

γQnk Q3k

+ γ

⋅

⋅

Qnk Q2k hf

M

=

1d

205.062 kN·m

I przesuniecie fundamentu w poziomie grunt- beton V

=

1d

683.5 kN

μ := 0.35

z normy PN-B_03010 tabela 3

z kolumny chropowata na podstawie kata tarcia wewnetrznego

R

:=

⋅

1hk

V1d μ

R

=

1hk

239.225 kN

Rhk

R

:=

1hd

γRh

R

=

=

1hd

239.225 kN

H1d 131.7 kN

warunek

R

>

=

1hd

H1d 1

spełniony

II Przesuniecie w gruncie pod fundamentem R

:=

⋅

⋅

+

⋅ ⋅ ⋅

1hk

Vd tan(ϕ') γϕ' γC' C' L B

R

=

1hk

300.677 kN

R1hk

R

:=

1hd

γRh

R

=

=

1hd

300.677 kN

H1d 131.7 kN

warunek

R

>

=

1hd

H1d 1

spełniony

V

:=

⋅

+

⋅(

+

+

+

+

) +

⋅

1d

γGk Vk γGk G1 G2 G3 G4 G5

γQk Q1k

V

=

1d

744.037 kN

H

:=

⋅

+

⋅

1d

γGnk Hk γQnk Q2k

H

=

1d

131.7 kN

M

:=

⋅

+

⋅

⋅

+

(− ⋅ + ⋅ + ⋅ ) +

⋅

...

1d

γGnk Mk γGnk Hk hf γGk G2 r2 G3 r3 G4 r4

γQnk Q3k

+ γ

⋅

⋅

+

⋅ ⋅

Qnk Q2k hf

Hd h γGk

M

=

1d

358.152 kN·m

e

:=

1b

0

M1d

e

:=

1l

V1d

L1

e

=

=

1l

0.481 m

0.296 m

6

L1

warunek

e

≤

=

1l

0

6

spełniony

Naprezenia

B' :=

− ⋅

1

B1 2 e1b

B' =

1

1.375 m

L' :=

− ⋅

1

L1 2 e1l

L' =

1

0.812 m

V

⋅

1d

V1d

6 e



1l 

σ

:=

⋅( + ⋅

÷

)

:=

⋅

−

d1max

1

6 e1l L'1 σd1min

1





L' ⋅

⋅

1 B'1

L'1 B'1

L'



1 

3

3

σ

=

×

=

×

d1max

3.035

10 kPa

σd1min

1.703

−

10 kPa

σd1max

σd1max

warunek

= 1.783

−

wynik

≤ 3 = 1

σd1min

σd1min

spełniony