Centralna Komisja Egzaminacyjna
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
WPISUJE ZDAJCY Miejsce
na naklejkÄ™
KOD PESEL
z kodem
EGZAMIN MATURALNY
MAJ 2010
Z MATEMATYKI
POZIOM ROZSZERZONY
Czas pracy:
1. Sprawdz, czy arkusz egzaminacyjny zawiera 24 strony
(zadania 1 11). Ewentualny brak zgłoś
180 minut
przewodniczącemu zespołu nadzorującego egzamin.
2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to
przeznaczonym.
3. Pamiętaj, że pominięcie argumentacji lub istotnych
obliczeń w rozwiązaniu zadania otwartego może
spowodować, że za to rozwiązanie nie będziesz mógł
dostać pełnej liczby punktów.
4. Pisz czytelnie i używaj tylko długopisu lub pióra
z czarnym tuszem lub atramentem.
5. Nie używaj korektora, a błędne zapisy wyraznie przekreśl.
6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
7. Możesz korzystać z zestawu wzorów matematycznych,
cyrkla i linijki oraz kalkulatora.
8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej
naklejkÄ™ z kodem.
9. Nie wpisuj żadnych znaków w części przeznaczonej dla
Liczba punktów
egzaminatora.
do uzyskania: 50
MMA-R1_1P-102
UkÅ‚ad graficzny © CKE 2010
2 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 1. (4 pkt)
Rozwiąż nierówność | 2x + 4| + x -1 d" 6 .
Egzamin maturalny z matematyki 3
Poziom rozszerzony
Nr zadania 1.
Wypełnia
Maks. liczba pkt 4
egzaminator
Uzyskana liczba pkt
4 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 2. (4 pkt)
Wyznacz wszystkie rozwiązania równania 2cos2 x - 5sin x - 4 = 0 należące do przedziału
0, 2Ä„ .
Egzamin maturalny z matematyki 5
Poziom rozszerzony
Nr zadania 2.
Wypełnia
Maks. liczba pkt 4
egzaminator
Uzyskana liczba pkt
6 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 3. (4 pkt)
Bok kwadratu ABCD ma długość 1. Na bokach BC i CD wybrano odpowiednio punkty E i F
umieszczone tak, by | CE |= 2 DF . Oblicz wartość x =| DF | , dla której pole trójkąta AEF
jest najmniejsze.
Egzamin maturalny z matematyki 7
Poziom rozszerzony
Nr zadania 3.
Wypełnia
Maks. liczba pkt 4
egzaminator
Uzyskana liczba pkt
8 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 4. (4 pkt)
Wyznacz wartości a i b współczynników wielomianu W x = x3 + ax2 + bx +1 wiedząc, że
( )
W 2 = 7 oraz, że reszta z dzielenia W x przez x - 3 jest równa 10.
( ) ( ) ( )
Egzamin maturalny z matematyki 9
Poziom rozszerzony
Nr zadania 4.
Wypełnia
Maks. liczba pkt 4
egzaminator
Uzyskana liczba pkt
10 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 5. (5 pkt)
O liczbach a, b, c wiemy, że ciąg a, b, c jest arytmetyczny i a + c = 10 , zaś ciąg
( )
(a +1, b + 4, c +19) jest geometryczny. Wyznacz te liczby.
Egzamin maturalny z matematyki 11
Poziom rozszerzony
Nr zadania 5.
Wypełnia
Maks. liczba pkt 5
egzaminator
Uzyskana liczba pkt
12 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 6. (5 pkt)
Wyznacz wszystkie wartości parametru m, dla których równanie x2 + mx + 2 = 0 ma dwa
różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest większa od 2m2 -13 .
Egzamin maturalny z matematyki 13
Poziom rozszerzony
Nr zadania 6.
Wypełnia
Maks. liczba pkt 5
egzaminator
Uzyskana liczba pkt
14 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 7. (6 pkt)
Punkt A = (-2,5) jest jednym z wierzchołków trójkąta równoramiennego ABC, w którym
| AC |=| BC | . Pole tego trójkąta jest równe 15. Bok BC jest zawarty w prostej o równaniu
y = x +1. Oblicz współrzędne wierzchołka C.
Egzamin maturalny z matematyki 15
Poziom rozszerzony
Nr zadania 7.
Wypełnia
Maks. liczba pkt 6
egzaminator
Uzyskana liczba pkt
16 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 8. (5 pkt)
1
Rysunek przedstawia fragment wykresu funkcji f (x) = . Przeprowadzono prostÄ…
x2
równoległą do osi Ox , która przecięła wykres tej funkcji w punktach A i B. Niech
C = (3, -1) . Wykaż, że pole trójkąta ABC jest większe lub równe 2.
y
3
2
1
-3 -2 -1 0 1 2 3 4
x
-1
Egzamin maturalny z matematyki 17
Poziom rozszerzony
Nr zadania 8.
Wypełnia
Maks. liczba pkt 5
egzaminator
Uzyskana liczba pkt
18 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 9. (4 pkt)
Na bokach BC i CD równoległoboku ABCD zbudowano kwadraty CDEF i BCGH (zobacz
rysunek). Udowodnij, że AC = FG .
E F
C
D
G
B
A
H
Egzamin maturalny z matematyki 19
Poziom rozszerzony
Nr zadania 9.
Wypełnia
Maks. liczba pkt 4
egzaminator
Uzyskana liczba pkt
20 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 10. (4 pkt)
Oblicz prawdopodobieństwo tego, że w trzech rzutach symetryczną sześcienną kostką do gry suma
kwadratów liczb uzyskanych oczek będzie podzielna przez 3.
Egzamin maturalny z matematyki 21
Poziom rozszerzony
Nr zadania 10.
Wypełnia
Maks. liczba pkt 4
egzaminator
Uzyskana liczba pkt
22 Egzamin maturalny z matematyki
Poziom rozszerzony
Zadanie 11. (5 pkt)
W ostrosłupie prawidłowym trójkątnym krawędz podstawy ma długość a. Ściany boczne są
trójkątami ostrokątnymi. Miara kąta między sąsiednimi ścianami bocznymi jest równa 2ą .
Wyznacz objętość tego ostrosłupa.
Egzamin maturalny z matematyki 23
Poziom rozszerzony
Nr zadania 11.
Wypełnia
Maks. liczba pkt 5
egzaminator
Uzyskana liczba pkt
24 Egzamin maturalny z matematyki
Poziom rozszerzony
BRUDNOPIS
Wyszukiwarka
Podobne podstrony:
EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONYEGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWZ maj2010EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY arkusz egzaminacyjny 6 05 2011 rokEGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWYEgzamin próbny z matematyki poziom rozszerzonyEgzamin maturalny z matematyki poziom podstawowy maj 2013Egzamin maturalny z matematyki poziom podstawowy czerwiec 2012Egzamin maturalny z matematyki poziom podstawowy sierpień 20122015 matura matematyka poziom rozszerzony KLUCZEGZAMIN MATURALNY Z JĘZYKA POLSKIEGO POZIOM ROZSZERZONY maj2010Matematyka poziom rozszerzony Egzamin maturalny 2012Matura 2016 matematyka poziom rozszerzonyOdpowiedzi Lubelska Próba Przed Maturą 2015 Poziom Rozszerzony Marzec 20152015 matura INFORMATYKA poziom rozszerzony TEST IMatematyka poziom rozszerzony arkusz dla technikum 2015arkusz maturalny WOS poziom rozszerzony maj 10więcej podobnych podstron