Ü f, g : X R h(x) := max{f(x), g(x)}. h a " R {x : h(x) < a} = = {x : max{f(x), g(x)} < a} = = {x : g(x) < a '" f(x) < a} = = {x : g(x) < a} )" {x : f(x) < a} f g Ã- {x : h(x) < a} " S h Ü A ‚" R f : R R x x " A f(x) = . -x x " A f f g(x) = x x " R 2x x " A f+g f(x)+g(x) = 0 x " A {x " R : f(x) + g(x) > 0} = A )" (0, ") {x " R : f(x) + g(x) < 0} = A )" (-", 0) A )" (0, ") A )" (-", 0) A\{0} = [A )" (0, ")] *" [A )" (-", 0)], A [A\{0}] = A [A\{0}] *" {0} = A f + g (1) =Ò! (2) (2) =Ò! (1) a " R qn qn d" a qn a {x " X : f(x) < a} = {x " X : f(x) < qn} (") n"N ‚" x " X f(x) < a n f(x) < qn d" a qn a x " {y : f(y) < qn} ‚" {y " Y : f(y) < qn}. n"N ƒ" x " {y " Y : f(y) < qn} n " N n"N f(x) < qn d" a x " {y " X : f(y) < a} (") {x " X : f(x) < qn} " S {x : f(x) < a} " S S Ã- f(x) := x x " R f à a " R {f(x) < a} = k " Z k < a d" k +1 {x " R : f(x) < a} = (-", k +1) " S. f S = {A : A- R\A- } f {x : f(x) < 0} = (-", 0) " S (1) =Ò! (2) U U = (an, bn) an, bn. n f-1(U) = f-1( (an, bn)) = f-1((an, bn)) = {x : an < f(x) < bn} = n n n ({x : an < f(x)} )" {x : f(x) < bn}) n Ã- f f-1(U) " S. (2) =Ò! (3) F f-1(F ) = R\f-1(R\F ) R \ F Ã- f-1(F ) " S. (3) =Ò! (1) a " R {x : f(x) < a} = R\{x : f(x) e" a} = R\f-1([a, ")) f : R R Ã- {x : f(x) < a} " S. " x " E f(x) := S - Ã- X, E ‚" X -" x " E f U ‚" R f-1(U) " S. f {x : f(x) < 0} = E " S, U ‚" R f-1(U) = {x : f(x) " U} = " " S