lista 4 podstawowe zagadnienia (1)

LISTA 4
Uklady r wnań liniowych
Twierdzenie 1 Jeżeli wyznacznik charakterystyczny W uk adu n r wnań
liniowych o n niewiadomych nie jest r wny zeru, to uk ad ten ma dok ad-
nie jedno rozwiazanie
W1 W2 Wn
x1 = , x2 = , ..., xn = .
W W W
Twierdzenie 2 Warunkiem koniecznym i wystarczajacym rozwiazalnósci
og lnego uk adu m r wnaÅ„ liniowych o n niewiadomych jest r wnós´ rzedu
c
macierzy W wsp czynnik w uk adu i rzedu macierzy uzupe nionej U, tzn.
r(W ) = r(U).
Gdy wsp lny rzad r tych macierzy r wna sie liczbie niewiadomych n, to uk ad
r wnaÅ„ ma dok adnie jedno rozwiazanie, gdy zás wsp lny rzad r jest mniejszy
od liczby niewiadomych n, to uk ad ma nieskończenie wiele rozwiazań, kt re
zależa od n - r dowolnych parametr w.
Bibliografia
[1] W. Krysicki, L. Wlodarski, Analiza matematyczna w zadaniach. Cz.
1, Wydawnictwo Naukowe PWN, Warszawa 2005
1

Wyszukiwarka