$2n-1 n
"
1 1 1 1 1
(0) + 21 + 22 + . . . = + + . . . = "
2 22 23 2 2
1 1
EU = u (0) + u 21 + . . . !=
2 22
L1 {" L2 pi,1u (xi) > pi,2u (xi)
i i
A - B
B - A
ŹA - ŹB
ŹB - ŹA
n = 1
n = k
n = k n = k + 1
4" n
X = { } R X X X
xRx e", =
Ź (xRx) >
xRy ! yRx
xRy ! Ź (yRx) >
xRy '" yRz ! xRz > e",
Ź (xRy) '" Ź (yRz) ! Ź (xRz) > e"
Ź (xRy) ! yRx e"
xRy '" yRz ! x = z >
xRz ! xRy (" yRz
x {" y - Ź (y {" x)
x {" x - Ź (x {" x)
xRz ! xRy (" yRz
x {" y '" y {" z x {" z
e" -
x =
4, y = 5, z = 2
Ź (x y) '" Ź (y z) - Ź (x z)
-
2 1
3 3
2 1
3 3
(x {" y) - Ź (y {" x)
101 100 120
X : Y : Z :
4 5 6
x {" y, x {" z z {" y
{" X = { } A ą" X A = "
A {"
C (A| {") = {x " A "y " A y {" x}
x A A x
C " A
A C (A| {") = "
C (A| {") = " x " A y " A
y {" x A
x, y A B x " C (A| {") y " C (B| {")
x " C (B| {") y " C (A| {")
x " C (A| {") "z " A z {" x y " A
y {" x x y
y x
x <" y
x A A,
A ą" X c (A) A
c (A) = "
x, y " A, B x " c (A) y " c (B)
x " c (B) y " c (A)
{"c x {"c y A x, y
x " c (A) y " c (A)
{"c c (A) {"c
A ą" X x, y " A {"c x {"c y
x " c (A) y " c (A) Ź (y {"c x) .
Ź (x {"c y) '" Ź (y {"c z) x {"c z
x {"c z =! z " c ({x, y, z})
Ź (y {"c z) =! z " c ({y, z}) y " c ({x, y, z})
Ź (x {"c y) =! y " c ({x, y}) x " c ({x, y, z})
4" c ({x, y, z}) = "
X = { } {" " u () , u : X R
x {" y u (x) > u (y)
u () {"
" u : X R x {" y u (x) > u (y)
x {" y =! u (x) > u (y)
=! u (y) > u (x)
=! y {" x
x " y '" y " z =! u (x) o" u (y) '" u (y) o" u (z)
=! u (x) o" u (z)
=! x " z
{"
{" u ()
X = { }
{" {" {" {"
u " [0, 1]
n n + 1
X
R
x1 x2.
X P X
{" " u : X R p1 {" p2 u (x) p1 (x) >
x
u (x) p2 (x)
x
{"
p {" q ą " (0, 1)
ąp + (1 - ą) r {" ąq + (1 - ą) r
r
ą ą
p q
{"
r r
1 - ą 1 - ą
p {" q {" r " ą, " (0, 1)
ąp + (1 - ą) r {" q {" p + (1 - ) r
ą
r
ą
p p
{" q {"
r r
1 - ą 1 -
b w X
b w b {" w ą < " [0, 1] b + (1 - ) w {"
ąb + (1 - ą) w
p, " ą" " [0, 1]
ą"
b
p <"
w
1 - ą"
ą" ą"
b
{" " u : X - R p {" q p (x) u (x) >
x
q (x) u (x)
x
u () v () v (x) = a + b u (x) b > 0
X = { }
p (x1)
x1
p (x2) x2
xn
p (xn)
u (xbest) = 1 u (xworst) = 0.
ą" " [0, 1] "xi " X
i
ą"
i
xbest
xi <"
xworst
1 - ą"
i
u (xi) = ą"
i
ą"
xb
1
p (x1)
1 - ą"
xw
1
ą"
xb
2
p (x2)
1 - ą"
xw
2
ą"
xb
p (xn) n
1 - ą"
xw
n
p (xi) ą"
i i
xb
xw
p (xi) (1 - ą")
i i
u (xb) = 1 u (xw) = 0 u (xi) = ą"
i
p (xi) u (xi)
i
p (xi) u (xi)
i
f2 () > 0 x, y " X x > y
x {" y u ()
f2 2 () < 0. p X Ep =
xp (x) ą " [0, 1]
x
f [ąx1 + (1 - ą) x2] e" ąf (x1) + (1 - ą) f (x2)
Ep p
u ()
Ep = ąx + (1 - ą) y Ep p
u (Ep) e" Eu (p)
u ()
ą
x
p =
y
1 - ą
x " X
u (y)
u (Ep)
Eu (p)
u (x)
x z y
Ep = ąx + (1 - ą) y
z
u (z) = Eu (p)
RP = EV - CE
u ()
Ep {" p CE < Ep RP > 0
Ep p CE d" Ep RP e" 0
Ep <" p CE = Ep RP = 0
Ep p CE e" Ep RP d" 0
Ep z" p CE > Ep RP < 0
1 1
2 2
z"
1
10
1
{"
9
10
w0 wl wh
w0
EUL
u (x0)
wl
w0
wh
EUL > u (w0)
u1 u2
u1 = a + bu2, b > 0 u1 u2
Eu1 (p) = p (x) u1 (x)
x"X
= p (x) [a + bu2 (x)]
x"X
= a p (x) + b p (x) u2 (x)
x"X x"X
Ą = a + bEu2 (p)
Eu1 (p) > Eu1 (q) Eu2 (p) > Eu2 (q) .
u1 u2
" h, k > 0
u1 (x) = h + ku2 (x) "x
x1
x <"
x0
u1 u2
ui (x) = Ąui (x1) + (1 - Ą) ui (x0) , i = {1, 2}
ui (x) - ui (x0)
4" Ą =
ui (x1) - ui (x0)
u1 (x) - u1 (x0) u2 (x) - u2 (x0)
= Ą =
1 -
u1Ą - u1 (x0) u2 (x1) - u2 (x0)
(x1)
u2 (x1) - u2 (x0) u2 (x) - u2 (x0)
=
u1 (x1) - u1 (x0) u1 (x) - u1 (x0)
x
x
h k
u2 2 (x)
rA (x) = -
u2 (x)
rA (x) > 0 u () x
w0 wl wh
w0
u1
u2
EU1
EU2
wl
w0
wh
w0
1 2
RP1 < RP2 =! CE1 < CE2
u2 u1 u2 w0
w0
x E = 0 Ą x0 + x
x
x0
Ą
u (x0 - Ą) = Eu (x0 + x)
f () f2 () f2 2 ()
RHS : u (x0 - Ą) H" u (x0) - Ąu2 (x0)
1
LHS : Eu (x0 + x) H" E u (x0) + xu2 (x0) + x2u2 2 (x0)
2
1
= Eu (x0) + E [xu2 (x0)] + E x2u2 2 (x0)
2
1
= u (x0) + u2 (x0) E [x] + u2 2 (x0) E x2
2
=0
=V
x
1
= u (x0) + u2 2 (x0) V
x
2
1
u (x0) - Ąu2 (x0) = u (x0) + u2 2 (x0) V
x
2
1
-Ąu2 (x0) = u2 2 (x0) V
x
2
1
Ą = - rA (x0) V
x
2
v (x) u (x) v (x) = f [u (x)] f ()
v2 2 (x)
v (x) = -
v2 (x)
v2 2 (x) = f2 [u (x)] u2 2 (x) + u2 (x) f2 2 (x) u2 (x)
= f2 (x) u2 2 (x) + f2 2 (x) [u2 (x)]2
v2 (x) = f2 [u (x)] u2 (x)
v2 2 (x) f2 (x) u2 2 (x) + f2 2 (x) [u2 (x)]2
4" - = -
v2 (x) f2 [u (x)] u2 (x)
u2 2 (x) f2 2 (x)
= - - u2 (x)
u2 (x) f2 (x)
f2 2 (x)
= ru (x) - u2 (x)
f2 (x)
<0
4" rv (x) > ru (x) , "x
p z u () (p + z)
z
rA
x0 Eu (x0) = u (x0)
u1 = a + bu2, b > 0
u2 = bu2
1 2
u2 2 = bu2 2
1 2
u2 2
1
r1 = -
u2
1
bu2 2
2
= -
bu2
2
= r2
-e-ąx
p q p
q
{"
Fp Fq p q p
q Fp (x) d" Fq (x) , "x
0.25 0.25
{"
0.5 0.3
0.25 0.2
P (X d" x) d" Q (X d" x) "x
P (X d" 0) = 0.25 Q (X d" 0) = 0.5
P (X d" 1) = 0.75 Q (X d" 1) = 0.8
p {" q EUp > EUq EUp - EUq
Ć Ć
EUp - EUq = u (x) fp (x) dx - u (x) fq (x) dx
Ć
= u (x) [fp (x) - fq (x)] dx
Ć
"
= u (x) [Fp (x) - Fq (x)]|" - [Fp (x) - Fq (x)] u2 (x) dx
-"
-"
d"0 e"0
Fp (x) d" Fq (x)
F OSD
p {" q EUp > EUq
u2 () > 0
b b
udv = uv|b - vdu
a a a
q
p
ńł ńł
ł ł
łHH 15 łHH 0
ł ł
łHT 1 łHT 5
p : q :
łT H 5 łT H 10
ł ł
ł ł
ół ół
T T 10 T T 15
p q
p q
Fp (x) < Fq (x) "x " (0, 1)
p q EVp e" EVq
p q EUp e" EUq
u (x) = x
F OSD
EVp e" EVq =! p {" q
SOSD
p {" q
Ć Ć
x x
Fp (t) dt d" Fq (t) dt
-" -"
p q
ńł
1
ł
ł5
3 2
10
5 3
p : 15 q :
1
ł
20
ół30 9
1 3
9
SOSD
p {" q
1 2
Pp (X d" 5) = , Pq (X d" 5) =
3 3
Ć Ć
15 15
8
Fp (t) dt = , Fq (t) dt = 1
9
-" -"
Ć Ć
30 30
Fp (t) dt = 1, Fq (t) dt = 1
-" -"
p q
p q
p q
q p
q = p +
x x
Fp (t) dt d" Fq (t) dt
-" -"
ńł ńł
ł ł
łHH 0 łHH 1.5
ł ł
łHT 5 łHT 4.5
q : p :
łT H 10 łT H 9.5
ł ł
ł ł
ół ół
T T 15 T T 14.5
q p p {" q
=!
w c
max u1 (c) + u2 (w - c)
c
"
u1 (c) + u2 (w - c) = u2 (c) - u2 (w - c) = 0
1 2
"c
u2 (c) = u2 (w - c)
1 2
u1 = u2
1
c = w
2
u2 2 () = 0
u2 2 () > 0
x
max u1 (c) + u2 (w - c + x)
c
"
u1 (c) + u2 (w - c + x) = u2 (c) - Eu2 (w - c + x) = 0
1 2
"c
u2 (c) = Eu2 (w - c + x)
1 2
u2 (c) | > u2 (c) |
1 1
Eu2 (w - c + x) > u2 (w - c)
2 2
Eu2 (w - c + x) > u2 [E (w - c + x)]
2 2
u2 () u2 2 2 () > 0
E [u2 (w + x)] = u2 (w - ) , E = 0
x
u2 ()
w - < w u2 ()
(w)
u2 2 2 (w)
(w) = -
u2 2 (w)
u2 (w - ) = Eu2 (w + x)
LHS : u2 (w - ) H" u2 (w) - u2 2 (w)
1
RHS : Eu2 (w + x) H" E u2 (w) + xu2 2 (w) + x2u2 2 2 (w)
2
1
= u2 (w) + (E u2 2 (w) + E2 u2 2 2 (w)
x) x
2
=0
1
= u2 (w) + V (w)
xu2 2 2
2
1
u2 (w) - u2 2 (w) = u2 (w) + V (w)
xu2 2 2
2
1 u2 2 2 (x)
= - V
x
2 u2 2 (x)
= V
x
2
u2 2 (w)
rA = -
u2 (w)
d u2 (w) u2 2 2 (w) - [u2 2 (w)]2
rA = -
dw
[u2 (w)]2
2
u2 2 2 (w) u2 2 (w)
= - +
u2 (w) u2 (w)
2
u2 2 2 (w) u2 2 (w) u2 2 (w)
= - +
u2 (w) u2 2 (w) u2 (w)
u2 2 (w) u2 2 2 (w) u2 2 (w)
= - -
u2 (w) u2 2 (w) u2 (w)
= rA (w) [rA (w) - (w)]
2
rA (w) (w) rA (w) Ą
= rA Ą =
< 0 > rA Ą <
Ą
u (w - Ą) = E [u (w + x)]
dx
w = 0
dw
dĄ
u2 (w - Ą) 1 - = E [u2 (w + x) (1)]
dw
= u2 (w - )
dĄ
= 0
dw
u2 (w - Ą) (1) = u2 (w - )
4" Ą =
dĄ
< 0
dw
dĄ
u2 (w - Ą) 1 - = u2 (w - )
dw
>1
u2 (w - Ą) < u2 (w - )
w - Ą > w -
Ą <
r2 (w) = r (w) [r (w) - (w)]
> r > r
EL1 + EL2
L1 + L2
H -1 H +1
p : q :
T +1 T -1
p z" -
q z" -
CEp + CEq
p + q = 0
CEp + CEq = -2
w w d" 100
u (w) =
1
50 + w w > 100
2
w0 = 101
1
+14
2
q : Eq = 1.5
1
-11
2
u
100
w
u (w0) = 100.5
1 1
Eu (w0 + q) = u (w0 + 14) + u (w0 - 11)
2 2
= 98.75
1
+20
2
p : Ep = 0
1
-20
2
q
1 1
Eu (w0 + p) = u (121) + u (81)
2 2
= 95.75
q
1
Eu (w0 + p + q) = (117.5 + 105 + 95 + 70)
4
= 96.88
u () Ep < 0
ł Eł d" 0
Eu2 2 (w + ł) u2 2 (w)
- e" - "w
Eu2 (w + ł) u2 (w)
x w x
Eu (w + CE (x | w)) = Eu (w + x)
u ()
ł x CE (x | w + ł) d"
CE (x | w)
x ł
1
(x | w + ł) H" V (w + ł)
xR
2
" (x | w + ł) - (x | w)
a"
(x | w)
R (w + ł) - rA (w)
=
rA (w)
"rA
=
rA
ł = - "r = -r2 (w)
"r r2 (w)
= - = [ (w) - r (w)]
r r (w)
> r
= r
ł = E = 0 ł
u2 2 2 2 (w)
t (w) = -
u2 2 2 (w)
"r 1
H" V (w) [t (w) - r (w)]
r 2
u ()
r (w) > 0
(w) > r (w)
t (w) > r (w) =! u2 2 2 2 (w) < 0
x ł
y = f (x)
y + "y = f (x + "x)
f (x) + "y H" f (x) + "xf2 (x)
"y H" "xf2 (x)
4" "r H" -r2 (w)
u () w Si {w, u} x
Si
Eł d" 0
p
u (w) u (EV ) =
u (pL) w - (w - pL) = pL
w - CE
w - CE > pL
RN
RA
URA (EV )
EURN = EURA
w - L CERA w - pL = CERN w
CE = EV - RP
= W - pL - RP
pL + RP pL
p q q < p
q
p q
p q
un (w) = ua (w) un (w - L) =
ua (w - L)
1
0
2
p :
1
-k
2
E = 0
1 1
0
2 2
p2 : p2 2 :
1 1
-k - k
2 2
p2 p2 2
w1 (x) = Eu (x + ) - u (x)
=u[E(x+
)]
x
u2 2 () d" 0
x
2
w1 (x) = Eu2 (x + ) - u2 (x)
u2 2 2 () e" 0 x
1
0
2
p :
1 1
2
2
1
2 1 0
2 2
p2 : p2 2 :
1 1 1 + 2 1
2 2
u2 2 2 2 () e" 0 p2 p2 2
0 p
p :
w + x 1 - p
x x
w
u (w) e" u (p)
u (w) e" pu (0) + (1 - p) u (w + x)
0 = (1 - p) u2 (w + x) dx + [u (0) - u (w + x)] dp
dp (1 - p) u2 (w + x)
=
dx u (w + x) - u (0)
u2 (w)
lim = !=
p,x0
u (w) - u (0)
1
=
w + y p
p :
w - x 1 - p
y p
u" = limy" u (w + y)
u (w) = pu (w + y) + (1 - p) u (w - x)
u (w) = pu" + (1 - p) u (w - x)
du (w)
= dp (u" - u (w - x)) + dx (- (1 - p) u2 (w - x)) = 0
dp dx
dp (1 - p) u2 (w - x)
=
dx u" - u (w - x)
u2 (w)
lim =
p,x0
u" - u (w)
a - be-rx a
dy
- v
dx
"V
"x
MRS = -
"V
"y
"v "v
v (x, y) "v = ,
"x "y
"v
y x
v (x, y) = ąx + y
= vx (x) + y
= vx (x) + vy (y)
x y x y "v ()
v (x, y) = vx (x) + y vx () x
x y
"v () x
v (x, y) = vx (x) + y
"v
"x 2
= vx (x)
"v
"y
x v ()
"y
MRS = = f (x)
"x
"y = "x f (x)
Ć Ć
dy = f (x) dx
Ć
y = f (x) dx - C
Ć
C = y + f (x) dx
=vx(x)
vx,y (x, y) =
vx (x) + vy (y)
MRS (x1, y2) MRS (x2, y2)
=
MRS (x1, y1) MRS (x2, y1)
MRS (x2, y1) MRS (x2, y2)
=
MRS (x1, y1) MRS (x2, y1)
x
QALY = qT
ln (QALY ) = ln q + ln T
MRS (q2, y1) MRS (q2, y2)
=
MRS (q1, y1) MRS (q1, y2)
(x, y) (x2 , y2 ) z (x, y, z) {" (x2 , y2 , z)
(x, y) z
x y z = z2 z2
(x, y, z2 ) {" (x2 , y2 , z2 ) (x, y) z
(x, y, z) {" (x2 , y2 , z) "z
L H Y
(L, H) Ą"p Y
(L, H) Ą"p Y
(L, Y ) Ą"p H
(Y, H) Ą"p L
(L, H) Ą"p Y T (L, H |) H"
[T (L, H | H") , H", Y ] <" (L, H, Y )
(L, H, Y ) , Y H = H". L
v (L, H, Y ) = v [T (L, H | H") , H", Y ] = v (T, Y )
H" Y
y
z
Ą"p y = "
y z z z
"
z z
"
z
z
y Ą"p Ą"p
z z y
v ( = f [vy ( , vz (
y, z) y) z)]
y z
f ()
x1, x2, . . . , xn
y, ą" X
y z z
n = 3 x1, x2 Ą"p x3 x2, x3 Ą"p x1
x1, x3 Ą"p x2
" X = {x1, x2, . . . , xn}
y, z
z
y )" = "
z
y *" = S
y z
z y
y z
x
x1, x2, . . . , xn "
v ( = vi (xi)
x)
i
u () v ()
v () = f (u ()) "f () st f2 () > 0
u () = f (v ()) "f () st f2 () > 0
p
y, z2
2
w,z <"
y2 , z2
1 - p
p
y, z2 2
2 2
w,z <"
y2 , z2 2
1 - p
w z
y z y
z = z2 z2
y Ą"u z u (y, z)
u (y, z) = a (z) + b (z) uy (y)
b (z) > 0 "z
x1, x2, . . . , xn
y z u (y, z)
u (y, z) = uy (y) + uz (z) + kuy (y) uz (z) !=
z
u (y, z | z = z") = uz (z") + uy (y) [1 + kuz (z")]
b (z) = [1 + kuz (z")]
k y z
B C
z1
z0 A D
y1
y0
u (y, z0) y
u (y, z0) = uy (y)
u (y, z) = u (y, z0) + u (y0, z) + ku (y, z0) u (y0, z)
u (A) = u (y0, z0) = 0
u (D) = u (y1, z0) = ą
u (B) = u (y0, z1) =
u (C) = u (y1, z1) = ą + + ką
k
1 1
2 2
A B
I : ? II :
C D
1
EUI = [ą + + ką]
2
1
EUII = [ą + ]
2
ńł
ł
ł {" k > 0 !=
<" k = 0 !=
ł
ół z" k > 0 !=
k = 0
k = 0 k > 0
v (y, z) = k [u (y, z)] + 1
= k [uy + uz + kuyuz] + 1
= kuy + kuz + k2uyuz + 1
= (kuy + 1) (kuz + 1)
= vy vz
y z
y, z
k = 0 u (y, z) = uy (y) + uz (z)
1
1
2
2
y2 , z
y2 , z2
<"
y, z
y, z2
y z
y z
y z
1 1
2 2
y2 , z2 y2 , z2 2
<"
y2 2 , z2 2 y2 2 , z2
y2 , z2 , y2 2 , z2 2
y2 , z2 A" y2 , z2 2
y2 , z2 A" y2 2 , z2
y z
k = 0
wz
u (wz, z) = Eu (ł, z)
y1, z
<"
wz, z y2, z
yn, z
z w z wz
z
(ł, z) w
ę ł z
(w, ę)
y z
y z
Eu (ł, z) = E [uy (ł) + uz (z) + kuy (ł) uz (z)]
Euy (ł) + Euz (z) + kE [uy (ł) uz (z)]
Ó!
= uy (w) + uz (ę) + kuy (w) uz (ę)
x1, x2, . . . , xn u (x1, . . . , xn)
n n
u (x1, . . . , xn) = ui (xi) + k ui (xi) uj (xj) +
i=1 i=1 j>i
n n
k2 ui (xi) uj (xj) um (xm) + kn-1 ui (xi)
i=1 j>i m>j i=1
k
k = 0 vi (xi) = kui (xi) + 1
n
v (x1, . . . , xn) = vi (xi)
i=1
n = 3
3 3
vi (xi) = kui (xi) + 1
i=1 i=1
= (ku1 + 1) (ku2 + 1) (ku3 + 1)
= (ku1 + 1) k2u2u3 + ku2 + ku3 + 1
= k3u1u2u3 + k2u1u2 + k2u1u3 + ku1 +
k2u2u3 + ku2 + ku3 + 1
ł ł ł łł
3 3
ł ł
= k ui + k uiujłł + k2 uił + 1
i=1 i j i=1
Ó!
ł ł
3 3
ł
4" u (x1, x2, x3) = ui + k uiujłł + k2 ui
i=1 i j i=1
k = 0
n
u (x1, . . . , xn) = ui (xi)
i=1
X = { } x+ (xi, xj)
ij
x+ = {x3, x4, . . . , xn}
12
x1, . . . xn x+"
12
1 1
2 2
x2 , x2 , x+" x2 , x2 2 , x+"
1 2 12 1 2 12
<"
x2 2 , x2 2 , x+" x2 2 , x2 , x+"
1 2 12 1 2 12
k = 0
k = 0
x1, . . . , xn
xi Ą"u x i = 1, 2, . . . , n
-i
{xi, xi+1, . . . , xn} Ą"u i = 2, 3, . . . , n {x1, x2, . . . , xn-1} Ą"u
xn
{xi, xi+1} Ą"u i = 1, 2, . . . , n - 1
j xj Ą"u x-j {xi, xj}
i = j
e" 2
some xi
x
x-i U (x)
ńł
ł
łV (x) !=
U (x) = -e-cV (x) !=
ł
ółecV (x) !=
x1 Ą"u x-1 x-1 = y (x, y)
x
V ( = iVi (xi) i = 1
x)
vi (xi") = 0 vi (x") = 1
i
V ( = 0 V ( ") = 1
x") x
x1 y
p
x1"
(x1, y) <"
Ć
x"
1
1 - p
y
p
A
n
f [1v1 (x1) + ivi (xi)] <"
Ć
i=2
B
1 - p
n
A = f 1v1 (x1") + ivi (xi)
i=2
n
B = f 1v1 (x") + ivi (xi)
1
i=2
x1 y y
Ć
xi Ą"u x-i
n n
U ( = ui + kijuiuj + kijmuiujum + k1n ui
x)
i=1 i j i j m i=1
k
k = 0
t
T
1
V (x) = xt
1 + r
t=0
xt e" yt "t y
x
xt > yt t {"
x y
xt = yt t t = {i, i + 1} y
x
i i + 1
x y
xt xt+!
xt+1
xt
xt xt+1 t
X = {x1, x2, . . .}
x1, x2, {x1, x2}
(x1, x2, x3 . . .) (x1, x2 , x2 . . .) (x2, x3, . . .)
2 3
(x2 , x2 , . . .)
2 3
"t
x1, x2, . . . , xt-1, yt , yt+1, . . . z" x1, x2, . . . , xt-1, xt , yt+1, . . .
y z" x
t
"
1
V (x1, x2, . . .) = V (xt)
1 + r
t=1
r > 0
t Ć
"
"
1
P V = xt H" xte-rtdt
1 + r
0
t=0
1 1
= = = =
1+d 1+r
B C
> d < r
B B
>
C C
ct t r
Xt Yt
t T t
T
1 1
c (Y ) = ct | ct d" yt
1 + r 1 + r
t=0 t=0
E (y) x " E (y) y x c (y) " E (y)
P Vc d" P Vy
X X2
2 2
"Y " E (X) st Y {" Y "Y " E (X2 )
X X2
2
X Y X Y
X2
Y, H = (y1, h1) , (y2, h2) , . . . , (yT , hT )
r
2
(yt, h") = (yt + Tt (ht, yt) , h")
t t
2
(yt, h") <" (yt + Tt (ht, yt) , h") <" (yt, ht)
t t
h" Tt h"
ht
t
T
1
v (y2 , h") = [yt + Tt (ht, yt)]
1 + r
t=0
U = u1 (y1, h1) + u2 (y2, h2)
1
max U st Y = y1 + y2, =
1 + r
L = u1 (y1, h1) + u2 (y2, h2) - [y1 + y2]
"L "u1
= -
"y1 "y1
"u1
=
"y1
"L "u2
= -
"y2 "y2
"u2
=
"y2
"u1 "u2
=
"y1 "y2
= 1
=
"y1 "u1
"h1
- =
"h1 "u1
"y1
"u2
"y2 "h2
- =
"h2 "u2
"y2
"y1 "u2
"h2
- =
"h2 "u1
"y1
MU2
"y1 "u2
"h2
- =
"h2 "u2
"y2
= MRSy ,h2
2
=
b
t = , b > 0
b + t
b
t+1 b+t+1 b + t
= = < 1 "t
b
t b+t b + t + 1
t+1
lim = 1
t"
t
t
1
=
1 + r
t+1 1
= "t
t 1 + r
t+1 1
lim =
t"
t 1 + r
t xt yt xt - yt
-1095
r = 0.1, b = 10
t = 1
1
P V (x - y) = 1000 - (1095) = 4.54
1.1
=! x {" y
10
P V (x - y) = 1000 - (1095) = 4.54
11
=! x {" y
t = 0
1 1
P V (x - y) = 0 + (1000) - (1095) = 4.13
1.1 1.21
=! x {" y
10 10
P V (x - y) = 0 + (1000) - (1095) = -3.41
11 12
=! x z" y
"
V = a (t) xt
t=0
a (t)
xs <" xt "s, t | s = t
xs {" xt "s < t
t
xs <" yt
xs+ <" yt+
x < y
t
1
a (t) =
1 + r
{"
xt {" x2
t2
2
xt {" x2 "t, t2 > , 2
t2
xt
2 t t2
{" xt {"0 x2
t2
xt+ {" x2
t2 +
x
=!
=!
b > 0 b st E = b
b
b {" b
1 1
Ż
b > E b
1 + r 1 + s
1 1
Ż Ż
b > b
1 + r 1 + s
s > r
c < 0 b st E = c
b
1 1
c > E c
Ż
1 + r 1 + s
1 1
c > c
Ż Ż
1 + r 1 + s
c < 0 r > s
x1 x2
u1 = x1 + x2
x1 x2
u1 = E + E
x1 x2
x1 + x2 = (x1 + ") + (x2 - ")
u2 = u (x1 + x2)
x2
Eu2 = Eu (x1 + x2) = u x1 + x2
u3 = v (x1) + v (x2)
< 1
x1 x2
Eu = Ev (x1) + Ev (x2) = v (x1) + v (x2)
Ć Ć
u2
u3 y1 y2 x1 x2
v (x1) H" v (y1) + (x1 - y1) v2 (y1)
v (x2) H" v (y2) + (x2 - y2) v2 (y2)
4" u3 H" v (y1) + (x1 - y1) v2 (y1) + [v (y2) + (x2 - y2) v2 (y2)]
v2 (y1) v2 ()
u3 v (y1) + (x1 - y1) v2 (y1) + [v (y2) + (x2 - y2) v2 (y2)]
=
v2 (y1) v2 (y1)
v2 (y2) v (y1) + v (y2)
= (x1 - y1) + (x2 - y2) +
v2 (y1) v2 (y )
1
v2 (y2)
" (x1 - y1) + (x2 - y2)
v2 (y1)
v2 (y2)
v2 (y1)
v2 (y2)
y2 > y1 - v2 (y2) < v2 (y1) - < 1
v2 (y1)
r = + g
r g
u3
r = 0.05
H" 0
g = 0.013
= 1
= 1 v () = ln ()
r
r <" Ą (r)
t
T
1
P V = E xt
1 + r
t=1
1
r = 0.1
2
Ą (r) =
1
r = 0
2
t
1 1 1
E = (1)t + (1.1)t
1 + r 2 2
t
1 1
lim E =
t"
1 + r 2
t
rt
Ć
min (r)
t
t t
1 1
E =
1+ 1+E
r r
rSRT P < rOC
t . . .
. . .
r r . . .
t
"
1 r
r =
1 + d d
t=0
d r
r
= S =
d
t
T
1
{bt - ct [pS + (1 - p)]}
1 + d
t=0
bt ct t p
1 - p S
T t = 0
C
C, H
H
C
(1+s)T
C, H
H
(1+d)T
C
C H
H
(1+d)T
C
(1+r)T
C
H
H
(1+r)T
(1+d)T
s = d = r =
C
(1+r)T
X <" Y s = d
X <" Z d = 0
Y <" W s = r
r = s = d = 0
X <" Z W <" Y Y Y
Y <" W {" Z <" X =! Y {" Z
Y <" Z
Z d < s
Y Q
"q2 > q1
(y2 , q1) <" (ąy2 , q2)
(y, q1) <" (ąy, q2)
0 < ą < 1
u (y, q) = auY (y) + buQ (q) + (1 - a - b) uY (y) uQ (q)
a = k1, b = k2, (1 - a - b) = k12
y q uY (y)
u2 2
Y
-y = k
u2
Y
p
(1 + ą) y
y <"
(1 - ) y
1 - p
y y
y y
ńł
ł-yr r < 0
ł
uY (y) = ln y r = 0
ł
ółyr r > 0
ln y r
r = 1 =!
r < 1 =!
r > 1 =!
r > 0 q " [q", q"]
p
(y, q") <" (py, q")
y
uQ (q") = 0 uQ (q") = 1
uY (y) = yr
u (y, q) = ayr + buQ (q) + (1 - a - b) yruQ (q)
u (y, q") = ayr
u (py, q") = a (py)r + b + (1 - a - b) (py)r
p
ayr = a (py)r + b + (1 - a - b) (py)r "y
b = 0 a = pr
u (y, q) = pryr + (1 - pr) yruQ (q)
r > 0
1
r
Hr (q) = [pr + (1 - pr) uQ (q)] , r = 0
Hr (q") = p
Hr (q") = 1
uQ
[Hr (q)]r - pr
uQ (q) =
1 - pr
[Hr (q)]r - pr
u (y, q) = pryr + (1 - pr) yr
1 - pr
= pryr + yr {[Hr (q)]r - pr}
= yr [Hr (q)]r
= [y Hr (q)]r
r = 1 y
u (y, q) = yp + yuQ (q) (1 - p)
uQ (q") = 0 p = 0
u (y, q) = y uQ (q)
r = 1
s
y, 1
y, q <"
y, 0
1 - s
r = 1
QALY = y uQ
= y VQ
= y s
u = V = s
(y, q) <" (py, 1)
u (q) = v (q) = p
r = 1
yruQ = syr + (1 - s) yr (0)
uQ = s
[yVQ]r = [syVQ]r + [(1 - s) y (0)]
1
r
VQ = s
uruQ = (py)r
uQ = pr
[yVQ]r = [py]r
VQ = p
uQ VQ
Ć
y
P V (y) = e-rtdt
0
r = 0
y
y = 0 q
y Ą"u q
u (y, q) = a (q) + V (q) y
u (y, q1)
u (y, q3)
u (y, q)
u (y, q2)
y
u (y, q1)
u (y, q)
u (y, q3)
u (y, q2)
0
y
u (y, q) = a (q) + v (q) uQ (q)
"2u
"y2
rA = -
"u
"y
v (q) u2 2 (q)
Q
= -
v (q) u2 (q)
Q
u2 2 (q)
Q
= -
u2 (q)
Q
A
Normal speech
U
A
No speech
y
arg max EU
t
T
1
QALY = qt
1 + r
t=0
weight = age e-ąage
ą = 0.04
1.5
1
8 55 age
weight
p"
p"
(y, q")
(y, q) <"
0.01
q"
h
p"
(y, q")
(h, q") <"
0.01
(y, q) <" (h, q")
h
h
u (, w) = ua (w) + (1 - ) ud (w)
1
=
0
p =
max EU = (1 - p) ua (w) + pud (w)
0 = (1 - p) u2 dw + pu2 dw - dpua + dpud
a d
dp [ua - ud] = dw [(1 - p) u2 + pu2 ]
a d
dw ua - ud
= = V SL
dp (1 - p) u2 + pu2
a
d
dw
dp
dw
= V SL
dp
ua (w) > ud (w)
u2 (w) > u2 (w)
a d
VSL
A
VSL
0 1
1 - p
wealth
p
dw
d
dp
> 0
dp
p
u2 < u2
d a
p
w
dw
d
dp
> 0
dw
ua (w) > ud (w) u2 (w) > u2 (w)
a d
u2 2 d" u2 2
a d
ud u2 ua u2
d a
u2 < u2
a, sick a, healthy
t t
1 1
max stu (ct) st ct d" W
1 + d 1 + r
st t
A
B
Age
r > d
ua - ud
V SL =
(1 - p) u2 + pu2
a d
ud = 0
ua
V SL =
(1 - p) u2
a
ud = 0
ua (0) = ud
VSL
ua
U
ua (w0)
va
(1 - p) ua (w0)
w = CEu CEv w0
Ż
W
u () w0 - w
p v ()
w0 - CEv
u () w0
v () w0 - w
ua
U
va
ua (w0)
(1 - p) ua (w0)
w0
Ż
CEv w = CEu
W
v ()
v ()
p, q p q
w0 + p = up w0 + q = uq
RPp = w0 - up > RPq = w0 - uq
u () v ()
(u) (v)
RPp > RPp
(v) (v)
RPq > RPq
p q
RPp - RPq
(u) (v)
RP > RP
u ()
u () v ()
u2 2 (w) v2 2 (w)
- > - "w
u2 (w) v2 (w)
u2 2 (w) v2 2 (w)
- , "w " [w", w"] > - , "w " [w", w"]
u2 (w) v2 (w)
1
1000
1000
1
V SLi = V SL
1000
i=1
V SL = $5M
p1 p2
1
(p1 + p2) = p
2
N
p1 -N
1 - p1
0
p2 -N
1 - p2
0
pN
w2
wp
Ż
w1
w0
1
1 1 Ż
0 - p2 - p 1 - p1
1 - p
wi w0
i
w2 w1
wp
1
(w1 + w2) > wp
2
VSL
x1
x
Ż
x2
s0 s1 1
0 s
Ż
Survival
1
x > (x1 + x2)
2
u (h, T, w) u (h, T |w) = QALY =
Q
u (h, T, w) = Q a (w) + b (w) , a (w) > 0
0 = Qa2 (w) dw + b2 (w) dw + a (w) dQ
dw a (w)
- =
dQ Qa2 (w) + b2 (w)
=!
"u
= Qa2 (w) + b2 (w)
"w
Q = 0 b2 (w)
VSL
ua - ud
V SL =
(1 - p) u2 + pu2
a
d
Qa (w) + b (w) - b (w)
=
(1 - p) (Qa2 (w) + b2 (w)) + pb2 (w)
Qa (w)
=
(1 - p) (Qa2 (w)) + b2 (w)
Qa (w)
V S =
(1 - p) (Qa2 (w))
Q ę!- V SL ę!
8
100,000
4
100,000
= $137
= $50
1
100,000
= $155
= $50
4
$3.4M =
100,000
V SL =
1
$2.2M =
100,000
1
1000
0.001
( ) > ( )
Pareto improvement zone
X
Y
SQ
Benefits to A
Y X
A B Y
H
L
5
L
100,000
4
H
100,000
risk V SL
Benefits to B
4
= $240
100,000
H
5
= $200
100,000
L
-30 +10
40
M
H
115 19.17 115 19.17
= =
6M M 6M M
50
M
L
115 28.75 115 28.75
= =
4M M 4M M
+2.08 -7.92
SQB
SQA
Benefits to A
SQA SQB
C W T P
NHB = "risk - =
"r
Benefits to B
W T P = W T A
$
y2
EV
y0
SQ
CV
y1
original
q0 q1
Q
y0 - y1
y2 - y0
EV e" CV
EV = CV
{"G= G ą" S S
R =
x {"G y xRy G {x, y}
G {x, y} " X G
X |X| e" 3 S e" 2 "
x {x, y, z} x
{x, y}
S
x {" y
y {" z
z {" x
1 1 1
, , . . . ,
1000 1000
1000
1 1
, , 0, 0 . . . , 0
2 2
1
1000
(1, 1, 1, . . .)
(0, 0, 0, . . .)
999
1000
1
1000
(1, 0, 0, 0 . . .)
1
(0, 1, 0, 0, . . .)
1000
(0, 0, 0, . . . , 1)
1
1000
x = Ex = 1
D {" C
C {" D
(p1, p2, . . . , p1000) = (pi, pj, pij)
pi i pij
(x1, x2, . . . , x1000)
1
xi =
0
(pi, pj, pij) (pi + , pj - , pij)
|pi - pj| < |pi + - (pj - )|
UR UF
UR (p1, p2, . . . , pn) = EUF (x1, x2, . . . , xn)
n
UR = ipi
i=1
i < 0 "i UR
UR
UR
UR
UR UF UR
n n
UR (p1, . . . , pn) = kipi + kijpipj + . . . + k1n pi
i=1 i,j i=1
UR (0, 0, . . . , 0) = 0
ki = UF (xi = 1, x-1 = 0)
n = 2
UF (0, 0) = 0
UF (1, 0) = u1
UF (0, 1) = u2
UF (1, 1) = u12
UR (p1, p2) = EUF (x1, x2)
=0
= (1 - p1) (1 - p2) UF (0, 0) +p1 (1 - p2) u1
+p2 (1 - p1) u2 + p1p2u12
= p1u1 - p1p2u1 + p2u2 - p1p2u2 + p1p2u12
= p1u1 + p2u2 + p1p2 [u12 - u1 - u2]
UR (p1, p2) = p1k1 + p2k2 + p12k12
UR UF
2
UR (, , 0, 0, . . . , 0) UR (2, 0, 0, 0, . . . , 0)
2
UR {" UR
k1 + k2 + k122 > k12
k1 + k2 + k12 > 2k1
k12 > k1 - k2
0 k1 - k2 0 k1 = k2 k1 = u1 =
UF (1, 0) k2 = u2 = UF (0, 1)
UR UF
n
u xi = u (x)
i=1
x
pi pj pij UR UF
UR
n
1
UR (p1, p2, . . . , pn) = (1 - kpi) - 1 , 0 < k < 1
k
i=1
UR (0, . . . , 0) = 0
UR (1, 0, . . . , 0) = UR (0, 1, 0, . . . , 0) = . . . = UR (0, 0, . . . , 1) = -1
1
u (x) = [(1 - k)x - 1]
k
u (x)
U
x
0
1
-
k
A B A B
C A D
B
(0, 1) <" (1, 0)
p {" q
ą ą
p q
{"
r r
1 - ą 1 - ą
p = (0, 1) q = (1, 0) p <" q
ą ą
(1, 0) (0, 1)
A"
(1, 0) (1, 0)
1 - ą 1 - ą
a s
Ąs
n
W (a) = ui (a)
i=1
W (a, s) = Ąsui (a, s)
i s
W (a, s) = Ąs ui (a, s)
s i
Eui
i
E ui
i
n
W (a) = g [ui (a)]
i=1
g2 () > 0 g2 2 () < 0
W (a, s) = g Ąsui (a, s)
i s
W (a, s) = Ąs g [ui (a, s)]
s i
"
g () =
Ąs
1
2
1
2
1
EUA = (100 + 9) = 54.5
2
1
EUB = (110 + 4) = 57
2
B {" A
1
W (A) = (100 + 9) H" 7.4
2
1
W (B) = (110 + 4) H" 7.5
2
B {" A
" "
1
W (A) = 100 + 9 = 6.5
2
" "
1
W (B) = 110 + 4 H" 6.2
2
A {" B
"W
=?
"ui,s
W = Ąsui,s
i,s
"W
= Ąs
"ui,s
W = g Ąsui,s
i s
"W
= Ąsg2 Ąsui,s
"ui,s
s
W = Ąs g [ui,s]
s i
"W
= Ąsg2 (ui,s)
"ui,s
g2 () i
g2 ()
x
w (x) =
f (x) = x
e (x) = x
p (x, e (x)) =
e = f (x) e (x)
x
ua (w) ud (w)
S = { }
EU [s, w (x) - e] = f (x) {p (x, e (x)) ud (w (x) - e) + [1 - p (x, e (x))] ua (w (x) - e)}
x
e (x)
pe (x, e (x))
EU2 (s, w (x) - e)
-pe (x, e (x)) =
U" (w - e)
U" = ua (w - e) - ud (w - e)
x
X = { }
S = { }
F = { }
F f () | S X
fA (sH) = $50
fA (sY ) = -$20
f {" f2
Ąs u [f (s)] > Ąs u [f2 (s)]
s s
Ąs
u () Ą" Ąs
f () Ą" Ąs Ą" u ()
0.01
-50 -50
A : B :
+50 +50
0.99
B
B
< 5% > 95%
Assessed probability
{"
"x, y " Z st x {" y
x {" y x
y
f, g, f2 , g2 " F A ą" S
f (s) = f2 (s) "s " A
g (s) = g2 (s) "s " A
f (s) = g (s) "s " A
/
f2 (s) = g2 (s) "s " A
/
A
S
f = f2
g = g2
f = g
f2 = g2
Z a" X = { }
Actual frequency
f {" g f2 {" g2
f {" g A f = g A A f = f2
g = g2
A = {s1, s2} A = {s3}
s1
s1
x2
x
f : g :
s2 y
s2 y2
s3
s3
z
z
s1
s1
x2
x
f2 : s2 y g2 :
s2 y2
s3
s3
z2
z2
f {" g s1, s2 x, y, x2 , y2 f2 {" g2
A
A ą" S f, g " F f <" g | A
A A A
p = 0
A ą" S f (s) = x g (s) = y g " A
f {"A g x {" y
c {" d c2 {" d2
A B
c c
f : g :
Ż
B
d d
A B
c2 c2
f2 : g2 :
Ż
B
d2 d2
f {" g !! f2 {" g2
Ż
A B B
A ą" S
[f {" g (s) | A] =! f g | A "s " A
[g (s) {" f | A] =! g s | A "s " A
f g
f, g " F f {" g
x " Z S A
"a " A, f2 (s) = x "s " A, f2 (s) = f (s) "s " A =! f2 {" g
"a " A, g2 (s) = x "s " A, g2 (s) = g (s) "s " A =! f {" g2
f2 f A
A x
A f2 g f g
x f g f2 x A
f A A
f2 g
F = {f1 = f2 = }
- $1000 - cost
S =
$3000 - cost
Z = {-$2000, -$1000, $2000, $3000}
f1 (s1) = -2000
f1 (s2) = 2000
f2 (s1) = -1000
f2 (s2) = 3000
0.1
5M
1.0
A1 : z" B1 :
0.89 1M 1M
0.01
0
0.1 0.11
5M 1M
A2 : {" B2 :
0.9 0.89
0 0
t
0.1
5M
1 - t
1M
A (t) : B (t) :
0.89 - t 1M
0
t
0
0.01 + t
A (0) = A1 B (0) = B1 A (0.89) = A2 B (0.89) = B2
A (0) z" B (0) A (0.89) {" B (0.89)
t
p 200 (1 - p) 2000
X <" g (x|) !=
<" f () !=
g (x|) f ()
P (|X) =
g (x|) f () d
Ć
h (x) = g (x|) f () d
x
p ()
d () =
1 - p ()
d ()
p () =
1 + d ()
d (|X)
P (|X) =
1 + d (|X)
d (|X) g (x|) f ()
=
1 + d (|X) h (x)
g(x|)f()
h(x)
d (|X) =
g x| f
( ) ( )
h(x)
g (x|) f ()
d (|X) =
g x| f
p ()
logit () = ln = ą + X
1 - p ()
= ln [( ) ( )]
= ln ( ) + ln ( )
ln ( ) X = 0 ą
T (x) g (x|)
p (|x1) = p (|x2) "x1, x2 T (x1) = T (x2)
T (x)
g (x|) <" U (0, ) <" f ()
x1, x2, . . . <" g (x|)
T (x) = max (xi)
i
e" 2
e" 10
X <" B (p)
n
i
i
p (x1, x2, . . . , xn | p) = px (1 - p)1-x
i=1
xi
i
i
= p (1 - p)n- xi
n
T (x) = xi, n
i=1
T (x) {f (x | ) , " &!}
f (x | )
f (x | ) = u (x) v [T (x)] "x " X, " &!
u () x v () x
T (x)
1 (xi - x)2
T (x1, x2, . . . , xn) = xi,
n
i
" T (x) g (x|) " p ()
p (|x) x
p () g (x|)
x1, x2, . . . xn <" Bern (p) p <" Beta (ą, )
g (x|) = px (1 - p)n-x
(ą + )
f (p | ą, ) = pą-1 (1 - p)-1
(ą) ()
ą
Ep =
ą +
ą Ep [1 - Ep]
Vp = =
ą + + 1
(ą + )2 (ą + + 1)
f (p) g (x|p)
p (p | x1, x2, . . . , xn) =
K
x
" p (1 - p)n- x pą-1 (1 - p)-1
<" Beta (ą + , + )
ą + + x
E (p|x) =
ą + + n
ą ą + x n
= +
ą + ą + + n n ą + + n
= Ep + (1 - ) x
n n ", 0, E (p|x) x
E (p|x) [1 - E (p|x)]
V (p|x) =
ą + + 1 + n
n ", V (p|x) 0
xi <" N , 2 2 <" N , 2
nx
+
1
2
2
p (|X) <" N ,
1 n 1 n
+ +
2 2
2 2
1 n
2
2
E (|X) = + x
1 n 1 n
+ +
2 2
2 2
= + (1 - ) x
n ", 0, E (|X) x V (|X) 0
x p (|x)
Ć
E [p (|x)] = p (|x) h (x) dx
Ćx Ć
= p (|x) g (x|) f () d dx
Ćx Ć
g (x|) f ()
= g (x|) f () d dx
g (x|) f () d
Ćx
= g (x|) f () dx
x
Ć
= f () g (x|) dx
x
=1
= f ()
V = Eh [V (|x)] + Vh [E (|x)]
E [V (|x)]
A = { a1, a2, . . . , an}
=
p () =
u [ai ()] = i
a" () p ()
Ep()u [a" ()] e" Ep()u [ai ()] "ai
Ć
Ep()u [ai ()] = u [ai ()] p () d
a"
a" ()
ai
Ć
EOL (ai) = {u [a" ()] - u [ai ()]} p () d
Ć Ć
= u [a" ()] p () d - u [ai ()] p () d
ai
a"
EV P I = EOL (a")
Ć Ć
= u [a" ()] p () d - u [a" ()] p () d
EV P I = EU - EU
Ć Ć
= p () max u [ai ()] d - max u [ai ()] p () d
i i
h (x) = g (x|) f () d x
x
EV SI = Eh Ep(|x)u a" () - Ep()u [a" ()]
p(|x)
Ć Ć
Ć
= h (x) p (|x) u a" () d dx - p () u [a" ()] d
p(|x)
x
x
EV SI = E EV - EV
EV P I | = EU - EU
EV P I | = EU - EU
EV P I | - E [EV P I | ] = EU - EU - E EU - EU
= E EU - EU
= EV SI
EVPI | prior
E [EVPI | post]
EVSI
EUprior EUposterior EUperfect
v
Ć
Ć
Ć
h (x) p (|x) u a" () - v dx = p () u a" ()
p(|x) p()
x
v
e
Ć
Ć
Ć
h (x) p (|x) u a" () dx = p () u a" () + e
p(|x) p()
x
! !
A !
" {1, 2}
1
1
2
p () =
1
2
2
a1 - a4
p () a1 a2 a3 a4
1 1
2
2 1
2
a" a" a"
1 2
a1, a2, a3, a4 a3 a2 a1
a1, a2, a4 a1 a2 a1
a2, a3, a4 a3 a2 a3 a4
a1, a2, a3 a3 a2 a1
a3, a4 a3 a4 a3 a4
-15
p 1 - p
pu (-15) + (1 - p) u (35) e" u (0)
u (35) - u (0)
p d"
u (35) - u (-15)
un = w ua = f (w)
p
7
pn =
10
u (35) - u (0)
pa =
u (35) - u (-15)
pa pn.
ua (-15) = un (-15)
ua (35) = un (35)
ua (0) > un (0) pa < pn
U
un
ua
-15 0
35
p < pa
p > pn
pa < p < pn
p
pa
p p
-15 0
prior : perfect :
1 - p
1 - p
+35 35
pn
p p
0 0
prior : perfect :
1 - p 1 - p
0 35
ai i
U
u (a2)
EVperfect
EVprior
u (a1)
Ż
1 2
a1 1 a2 2 a1
EV
u
<" U (-b, b)
a1 = 1 - 2
a2 = 0
u (w) = w
EUa = 0
2
Ć
b
1
EUa = 1 - 2 d
1
2b
-b
Ć
b
1
= 2 1 - 2 d
2b
0
b
1 3
= -
b 3
0
b2
= 1 -
3
, a1
"
b d" 3
b
b d" 1 a1 a2 EV P I = 0
b > 1 a1 || d" 1 a2
ł łł
ł śł
Ć Ć
-1 b
łĆ 1 śł
1
ł
EV |P I = 1 - 2 d + 0d + 0dśł
ł śł
2b
ł -1 1
-b ł
a1 a2
Ć
1
1
= 1 - 2 d
b
0
2
=
3b
EV P I = EV |P I - EV |
ńł
ł
ła1 b d" 1
"
a1| 1 d" b d" 3
ł
óła | b e" "3
2
ńł
ł0
b d" 1
ł
ł
"
2 b2
EV P I = - 1 - 1 d" b d" 3
3b 3
ł
"
ł
ół 2
b e" 3
3b
EV P I
"
0 1 3 b
1
3 0.99
+16 +4
A : z" B :
-2 +1
2
0.01
3
CEA > CEB
A
B
p L
pL L
p 1 - p p 1 - p
w - pL w - pL 0 pL
w - L w L - pL 0
L
pL
u = f ( ) + g ( )
f (x) = x, g (0) = 0, g2 () < 0
2
Euinsure e" Eudon t
p [w - pL + g (0)] + (1 - p) [w - pL + g (pL)] e" p [w - L + g (L - pL)] + (1 - p) [w + g (0)]
w - pL + (1 - p) g (pL) e" w - pL + pg ((1 - p) L)
(1 - p) g (pL) e" p g ((1 - p) L)
g ()
p (1 - p) LpL
(1 - p) L
L
(1 - p) g (pL)
(1 - p) g ((1 - p) L)
g ((1 - p) L)
(1 - p) pL pL
L - pL = (1 - p) L p
p 1 - p p 1 - p
w + (1 - p) L w - pL 0 pL
w w L - pL 0
2
Eubet e" Eudon t
p [w + (1 - p) L + g (0)] + (1 - p) [w - pL + g (pL)] e" p [w + g ((1 - p) L)] + (1 - p) [w + g (0)]
(1 - p) g (pL) e" p g ((1 - p) L)
0.25
0.5
=!
0.25
0.5
0.5
0.8 0.8
100
+200
=!
0
0.2 0.2
V = Ą (pi) v (xi)
i
Ą ()
Ą ()
Ą (0) = 0, Ą (1) = 1
Ą (ąp) > ą Ą (p) , ą " [0, 1]
Ą (pi) < 1,
i
45ć%
Ą (pq) Ą (pqr)
< , p, q, r " [0, 1]
Ą (p) Ą (pr)
1
Ą (p)
0 p 1
v ()
v ()
Gains
Losses
v (x) = Ą (pi) v (xi)
i
v (x) = v (x") + Ą (pi) [v (xi) - v (x")]
i
x" = mini {|xi|}
x p
L : , x z" y
y 1 - p
EV = px + (1 - p) y
EU = p u (x) + (1 - p) u (y)
V = w (pi) xi
i
x p
EY U = w (p) x + [1 - w (p)] y
y 1-w (p) w (1 - p)
px + (1 - p) y e" w (p) x + [1 - w (p)] y
w (p) > p
1
w (p)
0 p 1
V = w (pi) u (xi)
i
w (p) > p u ()
w ()
u ()
w ()
1
w (p)
0 p 1
ńł
p1
łx1
ł
ł
łx2 p2
ł
ł
ł
x3 p3 , x1 < x2 < . . . < xn
L :
ł
ł
ł
ł
ł
ł
ół
xn pn
Ą1 = w (p1)
Ą2 = w (p1 + p2) - w (p1)
i-1
i
Ąi = w pt - w pt
t=1 t=1
w (p)
1
Ą4
Ą3
Ą2
Ą1
0 p1 p1 + p2 p1 + p2 + p3
p " {P}
EU = min p (x) u (x)
p
i
v ()
EU = v [p (x) u (x)]
p i
X = {x1, x2, x3}
P = {p1, p2, p3}
x1 < x2 < x3 pi = 1
i
1
0
1
p1
3
p
e
r
u
s
r
o
f
3
x
e
r
e
u
r
s
u
r
s
o
r
f
o
f
2
x
1
x
EV
k = p1x1 + p2x2 + p3x3
= p1x1 + (1 - p1 - p3) x2 + p3x3
x2 - x1 k - x2
p3 = p1 +
x3 - x2 x3 - x2
EV
1
Constant EV lines
0
p1 1
EU = p1u (x1) + p2u (x2) + p3u (x3) = k
u (x2) - u (x1) k - u (x2)
4" p3 = p1 +
u (x3) - u (x2) u (x3) - u (x2)
EV
u (x3) - u (x2) < x3 - x2
u (x2) - u (x1) > x2 - x1
u (x2) - u (x1) x2 - x1
4" >
u (x3) - u (x2) x3 - x2
3
p
ICs
B
A p1
B A A {" B A
B
0.1
5M
1.0
a1 : {" a2 :
1M 0.89 1M
0.01
0
0.11 0.1
1M 5M
a3 : z" a4 :
0.89 0.9
0 0
x3 = 5M, x2 = 1M, x1 = 0
p1 p3
a1
a2
a3
a4
3
p
IC
IC
a4
a2
a1 a3
p1
ą ą
x p
b1 : {" b2 :
1 - ą 1 - ą
p"" p""
ą ą
x p
b3 : z" b4 :
1 - ą 1 - ą
p" p"
p"" {" p" p x
p""
b1 b2 b3/b4
ą = 0.11
10
5M
11
p =
1
1M
11
x = 1M
p" = 0
p"" = 1M
3
p
1
p = 1 q = 0.8 r =
4
q
p
y = 4000
x = 3000
c1 : {" c2 :
1 - p
1 - q
0
0
qr
pr
y = 4000
x = 3000
c3 : z" c4 :
1 - pr
1 - qr
0
0
p > q x < y
r " (0, 1)
x1 = 0, x2 = 3000, x3 = 4000
IC top
c2
IC bottom
c4
c1 c3
p1
10
5M
11
a2
1
0
11
a1
0.11
1M
1M
0.89
a2
3
p
10
5M
11
a2
1
0
11
a1
0.11
1M
0
0.89
SW1 {" SW2
SW1, SW2 {" SW1, SW1
R <" G {"
{" R <" G {" N
H, Y {" MIT {" Stanford
1 - p 1 - p
p p
V (p) = EU (p) = piu (xi)
i
V (p)
u () x
u ()
u1 u2 u1 = f (u2) f ()
V (p) = v (p1, p2, . . . , pn)
"
4" u (xi, p) = V (p)
"pi
p
p
p q
r (x, y) = -r (y, x)
q p
r (xi, xj) qipj e" r (xi, xj) pipj
i j i j
p
ł łł
ł
LHS : r (xi, xj) pjł qi = Ć (xi, p) qi
i j i
ł łł
ł
RHS : r (xi, xj) pjł pi = Ć (xi, p) pi
i j i
Ć (xi, p) x p
q {" p
Ć (xi, p) qi e" Ć (xi, p) pi
i i
EqĆ (x, p) e" EpĆ (x, p)
r
e" 3
> 2
Wyszukiwarka
Podobne podstrony:
review requirements tmS4695E9REVIEWANSWERS2014 xv smp final wynikiJRC NRD 525 technical reviewOnkyo Dvc601 Final[1]DoD Joint Services Weapon Safety Review Process120702094621 english at work episode! finalfinal 2product reviewsReview05final konkurs XIIrup review record?AA30B5Onkyo Dpc6 1 Finalwięcej podobnych podstron