Nr ćw. 301 |
01.01 1996
|
|
Wydział Elektryczny |
Semestr III |
Grupa nr wtorkowa godz.8.00 |
|
Przygotowanie |
Wykonanie |
Ocena ost. |
„Wyznaczanie współczynnika załamania światła metodą najmniejszego odchylenia w pryzmacie”
Wprowadzenie.
Załamanie światła.
Promień światła napotykając na granicę pomiędzy dwoma ośrodkami tzn.przy przejściu z jednego ośrodka do drugiego ulega załamaniu (rys.1) . Kąt padania α , to kąt zawarty między prostopadłą do obydwu ośrodków a promieniem padającym P. Kąt załamania β , to kąt zawarty między prostopadłą N a promieniem przepuszczonym Z. Załamanie światła na powierzchni rozgraniczającej dwa ośrodki opisane jest prawem Snella.
Prawa Snella w postaci powyższej nie używa się do praktycznego wyznaczania współczynnika załamania ze względu na niedogodność i niedokładność wyznaczania kątów padania i załamania, natomiast możemy je skutecznie zastosować do pryzmatu, gdzie kąty α i β można wyrazić przez inne, dogodne do pomiaru wielkości.
W naszym ćwiczeniu wykorzystujemy tylko dwie płaszczyzny pryzmatu, tworzące między sobą kąt ϕ, zwany kątem łamiącym. Promień świetlny padający na pryzmat ulega dwukrotnemu załamaniu i zostaje odchylony o pewien kąt ϕ, zależny od kąta padania α oraz kąta od kąta łamiącego ϕ. Na podstawie rys. Możemy wyrazić kąt odchylenia następująco:
Kąt padania możemy tak dobrać, aby promień biegnący wewnątrz pryzmatu był prostopadły do dwusiecznej kąta łamiącego ϕ. W tej sytuacji bieg promienia jest symetryczny , tzn. α1=α2 oraz β1=β2, a kąt odchylenia - najmniejszy z możliwych dla danego pryzmatu. Biorąc ponadto pod uwagę , że 2β=ϕ , możemy przekształcić równanie do postaci:
Podstawiając wyrażone powyżej wartości α i β do wzoru definiującego współczynnik załamania, otrzymamy:
Stosując powyższy wzór możemy wyznaczyć n na podstawie pomiarów kąta łamiącego i kąta nijmniejszego odchylenia.