![]() | Pobierz cały dokument lab.6.studia.pomoc.studialna.sprawozdania.z.doc Rozmiar 59 KB |
Wstęp teoretyczny :
Jeżeli do ciała przyłożymy ścinającą styczną to nastąpi tzw. odkształcenie przesunięcia prostego (czyli ścinanie) , a właśnie z nim związany jest moduł sztywności .
W skali mikroskopowej odkształcenie przesunięcia prostego tłumaczy się skrzywieniem komórek siatki krystalicznej. Jeśli weźmiemy pod uwagę najprostszą siatkę kubiczną (np. NaCl) to w niej jony zajmują takie położenie, które wynika z równowagi sił przyciągających i odpychających, które działają między jonami.
W kierunku AB działamy siłą Ft, spowoduje ona to, że komórka przekształci się z sześcianu w romboid. Jak widać z rysunku przekątna AB' ulega wydłużeniu, a A'B skróceniu, czyli między jonami A oraz B' działają siły przyciągania, natomiast między A'B odpychania. Jednak jeśli przestaniemy na siatkę działać siłą Ft, , to komórki wrócą do swego położenia równowagi. Metale mające strukturę polikrystaliczną przy odkształceniu przesunięcia prostego ulegają bardziej skomplikowanym skrzywieniom siatek krystalicznych.
Prawo Hooke'a - naprężenie wewnętrzne ciała sprężyście odkształconego jest proporcjonalne do względnego odkształcenia.
Korzystając z w/w prawa otrzymujemy :
= n pt
gdzie : - odkształcenie względne
pt - naprężenie styczne
n - wielkość stała, zależna od rodzaju materiału nazywana współczynnikiem przesunięcia prostego.
Wielkość = nazwano modułem sztywności.
Po podstawieniu otrzymujemy :
pt
Wzór ten można uważać za równanie definicyjne modułu sztywności. Liczbowo jest ono równe naprężeniu stycznemu, które wywołuje względne przesunięcie proste równe 1 rad .
Inny rodzaj odkształcenia to tzw. skręcenie. Przypuśćmy, że górny koniec prętu jest nieruchomy, a do dolnego końca przyłożony jest zewnętrzny moment siły M' (moment siły - jest to wielkość wektorowa opisująca oddziaływanie między ciałami, powodujące ich przyspieszenie kątowe).
Wartość liczbowa momentu siły wyraża się wzorem :
M = r F sin
Jednostką jest niutonometr.
Wybierzmy element dV pręta o powierzchni dS i długości L1 znajdujący się w odległości p od osi pręty OO'. Pod wpływem M' pręt ulega skręceniu o kąt co oznacza , że dla wybranego elementu dV powierzchnia dS przesuwa się z położenia A do położenia A' , a krawędzie równoległe do BA zajmują położenie równoległe do BA'. Czyli element dV ulega względnemu przesunięciu prostemu. Przy skręceniu pręta o kąt, spowodowany przyłożeniem zewnętrznego momentu siły M' , pojawia się równy co do wartości M' , ale przeciwnie skierowany wewnętrzny moment siły M (M = -M').
![]() | Pobierz cały dokument lab.6.studia.pomoc.studialna.sprawozdania.z.doc rozmiar 59 KB |