Od autorów
Kurs "Podstawy Fizyki" zostały opracowany z przeznaczeniem do samodzielnego studiowania fizyki w ramach studiów zaocznych AGH w systemie Otwartej Edukacji Niestacjonarnej. Materiały został zaprojektowane w taki sposób, że mogą być wykorzystywany samodzielnie w systemie kształcenia na odległość oraz jako materiał pomocniczy w kursach prowadzonych systemem mieszanym (stacjonarnie i na odległość).
Szanowny Czytelniku zanim rozpoczniesz naukę fizyki z wykorzystaniem tych materiałów przeczytaj poniższe informacje i koniecznie zapoznaj się z wprowadzeniem zawierającym porady dla studiujących. Znajdziesz tam wskazówki jak efektywnie uczyć się i jak sprawdzać swoje postępy.
Informacje ogólne
Fizyka jest nauką przyrodniczą badającą najbardziej podstawowe i ogólne własności otaczającego nas świata materialnego i zachodzące w tym świecie zjawiska. Celem fizyki jest poznanie praw przyrody, od których zależą wszystkie zjawiska fizyczne.
Podstawową metodą badawczą fizyki są obserwacje i doświadczenia. Na ogół proces poznawczy rozpoczyna się od obserwacji jakościowych; rejestrujemy, odkrywamy nowe zjawisko. Następnie przeprowadzamy doświadczenia mające na celu ustalić związki przyczynowe jak i uzyskać informacje ilościowe. Na tej podstawie staramy się sformułować prawa fizyki, które zapisujemy w postaci równań matematycznych. To przejście od obserwacji do modelu matematycznego znane jest jako metoda indukcji. W tej metodzie rozpoczynasz naukę od poznania przykładu lub od wykonania samodzielnego ćwiczenia, które ma na celu zwrócić uwagę na samo zjawisko jak i na czynniki istotne dla tego zjawiska. Ten sposób jest niewątpliwie najbardziej kształcący z punktu widzenia samodzielnej nauki.
Jednak umiejętności poprawnego wnioskowania i dokonywania uogólnień nie zawsze wystarczają do szybkiego, samodzielnego dotarcia do sformułowań praw fizyki (teorii fizycznych). Dzieje się tak po części dlatego, że prawa fizyki wyrażają związki ilościowe między różnymi wielkościami fizycznymi. Nie wystarczy stwierdzić, że jedna wielkość fizyczna zależy od drugiej (sformułowanie jakościowe) ale trzeba podać ścisłą relację między tymi wielkościami w postaci równania matematycznego, a to wiąże się zawsze z pomiarami określającymi liczbowo stosunek danej wielkości do przyjętej jednostki. Ponadto wszystkie wielkości fizyczne muszą być jednoznacznie określone i znajomość tych definicji jest niezbędna do sformułowania praw fizyki. Dlatego często naukę rozpoczyna się od poznania pewnej ilości definicji wielkości fizycznych, po których wprowadzane są wybrane prawa fizyczne. W większości przypadków prawa te poprzedzone są możliwie prostym wyprowadzeniem, którego celem jest podkreślenie logicznej struktury wnioskowania. Prawa te staraliśmy się zilustrować (uzasadnić) za pomocą różnych faktów doświadczalnych, które są podane w formie przykładów lub ćwiczeń do samodzielnego wykonania. W tej części nauka polega na wyciąganiu wniosków z poznanych uprzednio praw. Ta metoda, w której nowe zjawiska i wyniki doświadczeń przewidujemy jako logiczną konsekwencję poznanych praw (teorii) znana jest jako metoda dedukcji.
Praktyczne zastosowania pokazujące związek między fizyką i techniką są tym na co powinien zwrócić uwagę przyszły inżynier. Dlatego staraliśmy się zarówno w ćwiczeniach jak i przykładach przedstawić zagadnienia związane z rzeczywistymi sytuacjami. Mają one unaocznić fakt bezpośredniego związku fizyki z codziennym życiem, z jego różnymi aspektami.
Wprowadzenie - porady dla studiujących
Układ treści i korzystanie z materiałów
Materiał kursu został podzielony na rozdziały, które pogrupowane są w moduły. Powinieneś studiować je po kolei i przechodzić do następnego rozdziału dopiero gdy upewniłeś się, że rozumiesz materiał z poprzedniego. Ma to istotne znaczenie bo z wniosków i informacji z danego rozdziału będziesz wielokrotnie korzystał w następnych segmentach. Na końcu każdego modułu znajdziesz ponadto, krótkie podsumowanie najważniejszych wiadomości.
Przy czytaniu zwróć uwagę na specjalne oznaczenia (ikony, kolory) umieszczone w tekście. Mają one na celu zwrócić Twoją uwagę na najistotniejsze elementy takie jak: "definicje", "prawa, zasady, twierdzenia" i "jednostki". Fizyka, jak każda inna dyscyplina, posługuje się pewnymi charakterystycznymi sformułowaniami i pojęciami tak zwanymi pojęciami podstawowymi. Zostały one też opatrzone etykietami w postaci . Są one pomocne zwłaszcza przy powtórce i utrwalaniu wiadomości. Dodatkowo elementy najistotniejsze dla zrozumienia i opanowaniu materiału zostały wyszczególnione pochyłą czcionką. Zwróć na nie szczególną uwagę.
Oprócz tekstu podstawowego zawierającego między innymi definicje, twierdzenia, komentarze, w rozdziałach umieszczone zostały również "ćwiczenia" do samodzielnego wykonania. Ćwiczenia te mają różny charakter i różny stopień trudności. Są wśród nich takie, które uczą rozwiązywania zadań i problemów. Inne polegają na podaniu przez Ciebie przykładów ilustrujących dane prawa i zależności. Spotkasz się też z prostymi obliczeniami, które pozwolą zorientować się jaka jest skala różnych wielkości fizycznych. Poprawnie zrobione ćwiczenie stanowi cenne uzupełnienie materiałów. Część uzyskanych wyników jest potem wykorzystywana w kolejnych ćwiczeniach lub wprost w kolejnych zagadnieniach. Spróbuj je wszystkie wykonać. W materiałach umieszczono aktywne odnośniki oznaczone "Sprawdź obliczenia i wynik". Klikając na nie możesz sprawdzić poprawność rozwiązania lub uzyskać dodatkowe informacje, które pomogą rozwiązać problem. Dlatego nawet gdy nie potrafisz rozwiązać zadania zapisz te obliczenia, którym podołałeś i zanotuj gdzie napotkałeś na trudności. Postaraj się sprecyzować czy kłopot sprawiło Ci sformułowanie problemu, dobór odpowiednich wzorów czy obliczenia matematyczne, a następnie sprawdź rozwiązanie.
Prezentowane materiały są ilustrowane prostymi animacjami komputerowymi oznaczonymi oraz bardziej rozbudowanymi programami (symulacjami komputerowymi) wyróżnionymi ikoną: . O ile animacje komputerowe zostały przygotowane w możliwie prostej formie, tak że ich rozmiar pozwala na oglądanie ich "przez Internet" w czasie rzeczywistym, to programy są znacznie pokaźniejsze i uruchomienie ich z serwera może być kłopotliwe. Istnieje jednak możliwość zapisania ich (ściągnięcia) na lokalnym dysku i uruchomienia z własnego komputera.
Ponadto, w tekście umieszczono aktywne odnośniki , które pozwalają na przejście do dodatkowego materiału stanowiącego rozszerzenie i uzupełnienie kursu podstawowego. Postaraj się również w miarę możliwości zapoznać z tymi informacjami.
Wszystkie występujące w tekście oznaczenia są dostępne w każdej chwili w "Legendzie" (dostępnej z menu obok).
Na końcu każdego modułu znajduje się "Test kontrolny". Zawiera on zadania podobne do tych z jakimi spotkasz się na egzaminie lub przy zaliczeniu przedmiotu. Koniecznie zrób te zadania samodzielnie. Będziesz mógł ich rozwiązanie skonsultować z prowadzącym przedmiot. Dzięki korekcie i uwagom prowadzącego będziesz mógł się zorientować się czy opanowałeś materiał w wystarczającym stopniu. Przede wszystkim powinieneś jednak sam próbować ocenić swoje postępy. W tej ocenie mogą Ci pomóc zamieszczone poniżej kryteria.
Wskazówki ułatwiające samokontrolę postępów
Po przestudiowaniu każdego z rozdziałów, modułów powinieneś sprawdzić czy udało Ci się osiągnąć podane poniżej wyniki uczenia się. Umiejętność wykonania czynności zapisanych na tej liście świadczy o Twoich postępach w nauce i zdobytej wiedzy.
Po pierwsze sprawdź czy zapamiętałeś wiadomości z danego rozdziału. W tym celu wypowiedz na głos lub napisz na kartce definicje podstawowych pojęć, na przykład masy, pędu, siły. Czy potrafisz również napisać odpowiednie wzory? | |
---|---|
Teraz sprawdź czy rozumiesz zapamiętany materiał i czy potrafisz się nim posługiwać. Spróbuj najpierw rozwiązać samodzielnie (powtórzyć) przykłady rozwiązane w tekście. Określ wielkości szukane w zadaniu i wskaż na informacje niezbędne do jego rozwiązania (dane). Czy potrafisz podać metodę rozwiązania zadania wraz z odpowiednimi wzorami? Czy wiesz jakie warunki i założenia leżą u podstaw tych zależności? | |
Spróbuj wypowiedzieć definicje odpowiednich wielkości fizycznych i praw fizyki określających zjawiska w rozwiązywanym przykładzie. Czy potrafisz to zrobić własnymi słowami? | |
Czy poznane zależności i pojęcia wiążą się z rzeczywistymi sytuacjami życiowymi; postaraj się podać przykłady. | |
Spróbuj przekształcić podane wzory tak aby uzyskać postać umożliwiającą wyliczenie innych wielkości występujących w zadaniu. Ponownie spróbuj wskazać wielkości dane i szukane. | |
Spróbuj sam ułożyć zadanie lub sformułować pytania problemowe, pozwalające przećwiczyć rozwiązywanie problemów podobnych do tych w przykładach. Jeżeli określisz szczegółowe warunki i założenia niezbędne do rozwiązania zdania i potrafisz podać jakie dane są do tego niezbędne to dowiodłeś, że potrafisz analizować zjawiska przyrodnicze, wyciągać wnioski i dokonywać uogólnienia (syntezy). | |
Czy potrafisz powiedzieć jak można uzyskać te niezbędne dane? | |
Może zaprojektujesz doświadczenia (podasz sposób pomiaru), które z jednej strony pozwolą na otrzymanie potrzebnych danych, a z drugiej pozwolą niezależnie zmierzyć wielkość szukaną co umożliwi zweryfikowanie modelu teoretycznego? | |
Zastanów się czy analizując przykład, ćwiczenie, potrafisz ocenić stopień zgodności z rzeczywistością przyjętych założeń i uproszczeń. Czy taka idealizacja warunków jest konieczna? Które z przyjętych założeń i uproszczeń uważasz za najbardziej istotne i dlaczego? Może potrafisz zaproponować bardziej dokładne metody obliczania, wyznaczenia, wielkości fizycznych występujących w przykładach. |
Jeżeli potrafisz wykonać powyższe czynności to stajesz się ekspertem i możesz być pewny swojej wiedzy.
1. Wiadomości wstępne
1.1 Wielkości fizyczne, jednostki
Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa te formułowane są w postaci równań matematycznych wyrażających ścisłe ilościowe relacje między tymi wielkościami, a to wiąże się zawsze z pomiarami określającymi liczbowo stosunek danej wielkości do przyjętej jednostki .
Wiele z wielkości fizycznych jest współzależnych. Na przykład prędkość jest długością podzieloną przez czas, gęstość masą podzieloną przez objętość itd. Dlatego z pośród wszystkich wielkości fizycznych wybieramy pewną ilość tak zwanych wielkości podstawowych , za pomocą których wyrażamy wszystkie pozostałe wielkości nazywane wielkościami pochodnymi . Z tym podziałem związany jest również wybór jednostek. Jednostki podstawowe wielkości podstawowych są wybierane (ustalane), a jednostki pochodne definiuje się za pomocą jednostek podstawowych.
Aktualnie obowiązującym w Polsce układem jednostek jest układ SI (Systeme International d'Unites). Uklad SI ma siedem jednostek podstawowych i dwie uzupełniające niezbędne w sformułowaniach praw fizyki. Wielkości podstawowe i ich jednostki są zestawione w tabeli 1.1 poniżej.
Tab. 1.1. Wielkości podstawowe, uzupełniające i ich jednostki w układzie SI.
Wielkość | Jednostka | Symbol jednostki |
|
---|---|---|---|
1. 2. 3. 4. 5. 6. 7. |
Długość Masa Czas Ilość materii (substancji) Natężenie prądu elektrycznego Temperatura termodynamiczna Światłość |
metr kilogram sekunda mol amper kelwin kandela |
m kg s mol A K cd |
8. 9. |
Kąt płaski Kąt bryłowy |
radian steradian |
rad sr |
Definicje jednostek podstawowych są związane albo ze wzorcami albo z pomiarem.
Przykładem jest wzorzec masy. Obecnie światowym wzorcem kilograma (kg) jest walec platynowo-irydowy przechowywany w Międzynarodowym Biurze Miar i Wag w Sevres (Francja).
Natomiast przykładem jednostki związanej z pomiarem jest długość. Metr (m) definiujemy jako długość drogi przebytej w próżni przez światło w czasie 1/299792458 s.
Oprócz jednostek w fizyce posługujemy się pojęciem wymiaru jednostki danej wielkości fizycznej. Wymiarem jednostki podstawowej jest po prostu ona sama. Natomiast dla jednostek pochodnych wymiar jest kombinacją jednostek podstawowych (w odpowiednich potęgach). Na przykład jednostka siły ma wymiar kgm/s2 wynikający ze wzoru F = ma. Niektóre jednostki pochodne mają swoje nazwy tak jak jednostka siły - niuton.
Wreszcie, oprócz jednostek podstawowych i pochodnych posługujemy się także jednostkami wtórnymi , które są ich wielokrotnościami. Wyraża się je bardzo prosto poprzez dodanie odpowiedniego przedrostka określającego odpowiednią potęgę dziesięciu, która jest mnożnikiem dla jednostki (patrz tabela 1.2).
Tab. 1.2. Wybrane przedrostki jednostek wtórnych.
Przedrostek | Skrót | Mnożnik |
---|---|---|
tera giga mega kilo centy mili mikro nano piko femto |
T G M k c m μ n p f |
1012 109 106 103 10-2 10-3 10-6 10-9 10-12 10-15 |
1.2 Wektory
W fizyce mamy do czynienia zarówno z wielkościami skalarnymi jak i wielkościami wektorowymi. Wielkości skalarne takie jak np. masa, objętość, czas, ładunek, temperatura, praca, mają jedynie wartość. Natomiast wielkości wektorowe np. prędkość, przyspieszenie, siła, pęd, natężenie pola, posiadają wartość, kierunek, zwrot. Poniżej przypominamy podstawowe działania na wektorach.
Rozkładanie wektorów na składowe
W działaniach na wektorach operuje się składowymi tych wektorów wyznaczonymi w wybranym układzie odniesienia.
Składowe wektora wyznaczamy umieszczając początek wektora w początku układu współrzędnych i rzutując koniec wektora na poszczególne osie wybranego układu współrzędnych.
Rys. 1.1. Wektor r i jego składowe rx, ry, rz w pewnym układzie współrzędnych
Suma wektorów
W wybranym układzie współrzędnych wektor jest definiowany przez podanie jego współrzędnych np.
Zwróćmy w tym miejscu uwagę na przyjętą konwencję. Wszystkie wektory wyróżnione są w tekście czcionką wytłuszczoną.
Sumą dwóch wektorów jest nowy wektor o współrzędnych
Geometrycznie jest to przekątna równoległoboku zbudowanego na tych wektorach. Różnicę dwóch wektorów przedstawia druga przekątna (rysunek poniżej).
Rys. 1.2. Suma i różnica wektorów
Iloczyn skalarny
Iloczyn skalarny dwóch wektorów a · b jest liczbą (skalarem) równą iloczynowi wartości bezwzględnych (długości) tych wektorów pomnożony przez cosinus kąta między nimi
Iloczyn skalarny jest często stosowany do opisu wielkości fizycznych. Przykładem wielkości fizycznej, którą można przedstawić jako iloczyn skalarny dwóch wielkości wektorowych jest praca. Praca jest iloczynem skalarnym siły i przesunięcia.
Iloczyn wektorowy
Iloczyn wektorowy dwóch wektorów a x b jest nowym wektorem c, którego długość (wartość bezwzględna) jest równa iloczynowi długości tych wektorów i sinusa kąta pomiędzy nimi
Wektor c jest prostopadły do płaszczyzny wyznaczonej przez wektory a i b. Zwrot jego jest określony regułą śruby prawoskrętnej lub regułą prawej ręki. Jeżeli palce prawej ręki zginają się w kierunku obrotu wektora a do wektora b (po mniejszym łuku) to kciuk wskazuje kierunek wektora c = a x b tak jak na rysunku poniżej
Rys. 1.3. Iloczyn wektorowy
2. Ruch jednowymiarowy 2.1 Wstęp Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką.
Położenie określamy względem układu odniesienia tzn. wybranego ciała lub układu ciał. Zwróćmy uwagę na to, że ruch tego samego ciała widziany z różnych układów odniesienia może być różny. W szczególności można wybrać taki układ odniesienia, w którym ciało nie porusza się. Oznacza to, że ruch jest pojęciem względnym.
Rzeczywiste ciała mają zawsze skończoną objętość, ale dopóki rozpatrujemy ich ruch postępowy (ciała nie obracają się, ani nie wykonują drgań) to z dobrym przybliżeniem możemy je traktować jako punkty materialne. To przybliżenie może być z powodzeniem stosowane do opisu ruchu obiektów o różnej wielkości, zarówno "małych" cząsteczek, jak i "dużych" planet.
Test
|
---|