ZESTAWIENIE OBCIĄŻEŃ NA FILAR ŚCIANY ZEWNĘTRZNEJ
bo1 = 1,50 m
bo2 = 1,50 m
b fz = 1,40 m
hf = 3,07 m
Afz1 = 9,0307 m2
Afz2 = 7,4647 m2
Af* = 8,9030 m2
AfO = 6,6530 m2
Nfz=$\left( b_{\text{fz}} + \frac{1}{2} \bullet b_{o1} + \frac{1}{2} \bullet b_{o2} \right) \bullet h_{f} \bullet G_{d}^{\text{fz}} \bullet \frac{A_{f}^{O}}{A_{f}^{*}} = \left( 1,40 + \frac{1}{2} \bullet 1,50 + \frac{1}{2} \bullet 1,50 \right) \bullet 3,07 \bullet 5,838 \bullet \frac{6,6530}{8,9030} = \ \ \ \ \ = \mathbf{38}\mathbf{,8402}\mathbf{\text{\ kN}}$
$$\frac{1}{2}N_{\text{fz}} = \frac{1}{2} \bullet 30,3976 = 19,4201\text{\ kN}$$
2 PIĘTRO
$${N_{1d}^{2P} = \left( G_{d} + s_{d} \right)^{\text{stropodach}} \bullet A_{\text{fz}} = \left( 5,468 + \frac{1,168}{\cos\left( 2^{o} \right)} + \frac{1,08}{\cos\left( 2^{o} \right)} \right) \bullet 9,0307 + 0,385 \bullet 7,4647 = \backslash n}{\ \ \ \ \ \ \ \ \ \ = \mathbf{72,7672\ kN}}$$
$$N_{\text{md}}^{2P} = N_{1d}^{2P} + \frac{1}{2}N_{\text{fz}} = 72,7672 + 19,4201 = \mathbf{92,1873}\mathbf{\text{\ kN}}$$
$$N_{2d}^{2P} = N_{\text{md}}^{2P} + \frac{1}{2}N_{\text{fz}} = 92,1873 + 19,4201 = \mathbf{111,6074}\mathbf{\text{\ kN}}$$
1 PIĘTRO
$${N_{1d}^{1P} = N_{2d}^{2P} + \left( G_{d} + q_{d} \right)^{\text{strop}} \bullet A_{\text{fz}} = 111,6074 + 3,983 \bullet 9,0307 + 4,485 \bullet 7,4647 = \mathbf{181,0559}\mathbf{\text{\ kN}}}{N_{\text{md}}^{1P} = N_{1d}^{1P} + \frac{1}{2}N_{\text{fz}} = 181,0559 + 19,4201 = \mathbf{200,4760}\mathbf{\text{\ kN}}}$$
$$N_{2d}^{1P} = N_{\text{md}}^{1P} + \frac{1}{2}N_{\text{fz}} = 200,4760 + 19,4201 = \mathbf{219,8961}\mathbf{\text{\ kN}}$$
PARTER
$${N_{1d}^{\text{parter}} = N_{2d}^{1P} + \left( G_{d} + q_{d} \right)^{\text{strop}} \bullet A_{\text{fz}} = 200,8961 + 3,983 \bullet 9,0307 + 4,485 \bullet 7,4647 = \backslash n}{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \mathbf{289,3446}\mathbf{\text{\ kN}}}{N_{\text{md}}^{\text{parter}} = N_{1d}^{\text{parter}} + \frac{1}{2}N_{\text{fz}} = 289,3446 + 19,4201 = \mathbf{308,7647}\mathbf{\text{\ kN}}}$$
$$N_{2d}^{\text{parter}} = N_{\text{md}}^{\text{parter}} + \frac{1}{2}N_{\text{fz}} = 308,7647 + 19,4201 = \mathbf{328,1848}\mathbf{\text{\ kN}}$$