$$Q = \frac{54,8m^{3}}{h}$$
H = 12, 4m
Hg = 9, 8m
|
Moc hydrauliczna:
$$P_{h} = v \bullet F = v \bullet p \bullet A = Q \bullet p = Q \bullet \rho \bullet g \bullet H = \frac{54,8}{3600} \bullet 1000 \bullet 9,81 \bullet 12 = 1851,692W$$
|
|
|
Wyróżnik kształtu (szybkobierzności):
n=15-25
$$n_{q} = \frac{n \bullet \sqrt{Q}}{H^{\frac{3}{4}}}$$
$$n = \frac{n_{q} \bullet H^{\frac{3}{4}}}{\sqrt{Q}}$$
Prędkość maksymalna:
$$n_{\min} = \frac{n_{q} \bullet H^{\frac{3}{4}}}{\sqrt{Q}} = \frac{15 \bullet {12,4}^{\frac{3}{4}}}{\sqrt{54,8}} = 803,375\frac{1}{\min}\ $$
Prędkość minimalna:
$$n_{\max} = \frac{n_{q} \bullet H^{\frac{3}{4}}}{\sqrt{Q}} = \frac{25 \bullet {12,4}^{\frac{3}{4}}}{\sqrt{54,8}} = 1338,959\frac{1}{\min}\ $$
|
|
|
Dobór silnika:
$$803,375\frac{1}{\min} < n < 1338,959\frac{1}{\min}$$
Dobieram silnik Sg 132M-6A
$$n = 1000\frac{1}{\min}$$
$$n_{\text{znam}} = 950\frac{1}{\min}$$
Nznam = 4 kW
|
|
|
Wyróżnik kształtu:
$$n_{q} = \frac{n_{\text{znam}} \bullet \sqrt{Q}}{H^{\frac{3}{4}}} = \frac{950 \bullet \sqrt{\frac{54,8}{3600}}}{{12,4}^{\frac{3}{4}}} = 18,204$$
|
|
|
Sprawność pompy:

η = 0, 75
|
|
|
Moc na wale:
$$\eta = \frac{P_{h}}{P_{w}}$$
$$P_{w} = \frac{P_{h}}{\eta} = \frac{1851,692}{0,75} = 2468,923\ W$$
|
|
|
Moc silnika:
Ps = Pw • (1+δ) = 2468, 923 • 1, 3 = 3209, 599W
|
|
|
Obliczenia wału:
$$\omega = \frac{2\pi \bullet n_{\text{znam}}}{60} = \frac{2\pi \bullet 950}{60} = 99,484\frac{1}{s}$$
P = Msω
$$M_{s} = \frac{P}{\omega} = \frac{4000}{99,484} = 40,208\text{\ Nm}$$
$$\frac{M_{s}}{W_{o}} < k_{\text{sj}}$$
$$\frac{M_{s}}{\frac{\pi d^{3}}{16}} < k_{\text{sj}}$$
$$d > \sqrt[3]{\frac{16M_{s}}{\pi k_{\text{sj}}}}$$
|
|
|
|
|