Temat 1 sciaga

Pomierzone przewyższenia

Od do dh N

A-1 0,932 4

1-B 0.319 6

A-2 2,187 4

Itp. Itp. Itp.nZA=225,383 m

ZB=226,383m

ZC=230,056m

1) obliczenie przybliżonych wysokości reperów wyznaczonych

Z10 =ZA+h1=226,315

Z20=ZA+h3=227,570

Z30=ZA+h5=227,564

2) Obliczenie przybliżonych przewyższeń

h10=Z10- ZA=

h20=ZB- Z10=

h30=Z20- ZA=

h40=ZC- Z20=

h50=Z20- ZB=

h60=ZC- Z30=

h70=Z20- Z10=

h80=Z30- Z10=

h90=Z20- Z30=

3)obliczenie macierzy współczynników

A=dZ1 dZ2 dZ3

1 0 0

-1 0 0

0 1 0

0 -1 0

0 0 1

0 0 -1

-1 1 0

-1 0 1

0 1 -1

4)obliczenie wyrazów wolnych

L= dh -h10

5)obliczenie macierzy wag

P= $\frac{n}{N}$

0,25 0 0 0 0 0 0 0 0 0

0,16 0 0 0 0 0 0 0 0

0 0,25 0 0 0 0 0 0 0

0 0 0 0.33 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0.3 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0,25 0

0 0 0 0 0 0 0 0 0 0 1

6)obliczenie niewiadomych poprzez rozwiązanie układu równań

metoda najmniejszych kwadratów (ATPA )−1 ATPL

a) AT

A= $\begin{bmatrix} 1 & 0 & 0 \\ - 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & - 1 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1 \\ 0 & 1 & - 1 \\ \end{bmatrix}$ AT= $\begin{bmatrix} 1 & - 1 & 0 & 0 & 0 & 0 & - 1 & - 1 & 0 \\ 0 & 0 & 1 & - 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & - 1 & 0 & 1 & - 1 \\ \end{bmatrix}$

B)

ATP= $\begin{bmatrix} 0.25 & - 0.16 & 0 & 0 & 0 & 0 & - 1 & - 0.25 & 0 \\ 0 & 0 & 0.25 & - 0.33 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & - 0.33 & 0 & 0.25 & - 1 \\ \end{bmatrix}$

c) AT PA


$$\begin{bmatrix} 1.67 & - 1.00 & - 0.25 \\ - 1.00 & 2.58 & - 1.00 \\ - 0.25 & - 1.00 & 2.58 \\ \end{bmatrix}$$

d) macierz odwrotna (ATPA )−1

a11=${( - 1)}^{1 + 1}\left| \begin{matrix} 2.58 & - 1.00 \\ - 1.00 & 2.58 \\ \end{matrix} \right|$=5.66

a12=${( - 1)}^{1 + 2}\left| \begin{matrix} - 1 & - 1 \\ - 0.25 & 2.58 \\ \end{matrix} \right|$=2.83

a13=${( - 1)}^{1 + 3}\left| \begin{matrix} - 1 & 2.58 \\ - 0.25 & - 1 \\ \end{matrix} \right|$=1.645

a21=${( - 1)}^{2 + 1}\left| \begin{matrix} - 1 & - 0.25 \\ - 1 & 2.58 \\ \end{matrix} \right|$=-2.83

a22=${( - 1)}^{2 + 2}\left| \begin{matrix} 1.67 & - 0.25 \\ - 0.25 & 2.58 \\ \end{matrix} \right|$=4.245

Itp.

Wyznacznik macierzy A:

Det A=$\left| \begin{matrix} 1.67 & - 1 & - 0.25 \\ - 1 & 2.58 & - 1 \\ - 0.25 & - 1 & 2.58 \\ \end{matrix} \right|$= 6.205

Macierz dopełnień

D= $\left| \begin{matrix} 5.656 & 2.83 & 1.645 \\ 2.83 & 4.246 & 1.920 \\ 1.645 & 1.92 & 3.308 \\ \end{matrix} \right|$

A−1= $\frac{1}{det(A)}$ x DT

A−1=$\left| \begin{matrix} 0.913 & 0.456 & 0.265 \\ 0.456 & 0.684 & 0.307 \\ 0.265 & 0.309 & 0.533 \\ \end{matrix} \right|$

e) (ATPA )−1 x AT

f) (ATPA )−1 x AT x P

g) (ATPA )−1 x AT x P x L

$\hat{X}$=$\begin{bmatrix} 0.7 \\ 6.8 \\ - 1.4 \\ \end{bmatrix}$ w [mm]

dZ1=0.0007m

dZ2=0.0068m

dZ3=-0.00014m

7) obliczenie uzgodnionych wysokości reperów [m] $\hat{Z_{i}}$= dZ1+Z10

$\hat{z_{1}}$=0.0007+226.315= 226.3157

$\hat{Z_{2}}$=0.0068+227.570=227.5768

$\hat{Z_{3}}$=0.0014+227.564=227.5626

8)obliczenie odchyłek losowych do obserwowanych przewyższeń

V=A$\hat{x}$ –L

A$\hat{x}$= A x $\hat{x}$

V=A$\hat{x}$ –L [mm]

9) obliczenie uzgodnionych wartości przewyższeń [m]

hi + vi =$\hat{h}$

0.932 + 0.0007 =0.9327

Itp.

10) kontrola obliczeń

a)obliczenie przewyższeń na podstawie uzgodnionych wysokości reperów

$\hat{h_{1}}$= $\hat{z_{1}}$ -ZA

$\hat{h_{2}}$=ZB - $\hat{z_{1}}$

Itp.

b) porównanie przewyższeń na podstawie uzgodnionych wysokości reperów

11) obliczenie estymatora wariacji resztowej ${\hat{\sigma}}^{2}$ = $\frac{v^{T}\text{Pv}}{n - u}$

vT= $\left| \begin{matrix} 0.7 & 3.3 & 6.8 & 0.2 & - 1.4 & - 0.6 & - 1.9 & 5.9 & 0.2 \\ \end{matrix} \right|$

vT x P

vT x P x v

Obliczenie odchylenia standardowego (błędu średniego) $\hat{\sigma_{0}}$ na jedno stanowisko niwelatora[mm]

$\hat{\sigma_{0}}$ = $\sqrt{{\hat{\sigma}}^{2}\ }$

12)obliczenie macierzy kowarencyjnej dla uzgodnionych wysokości reperów Cov($\hat{z}$) =${\hat{\sigma}}^{2}{(A^{T}\text{PA}\ )}^{- 1\ }$

13) obliczenie odchyleń standardowych uzgodnionych wysokości [mm]

σZ1=


Wyszukiwarka