Przepływomierz ultradźwiękowy

Przepływomierz ultradźwiękowy – to przyrząd pomiarowy, który mierzy prędkość przepływu medium przez daną powierzchnię prostopadłą do kierunku przepływu.

Zasada działania 

Zasada działania

Zasada działania przepływomierza ultradźwiękowego bazuje na pomiarze różnicy czasów przejścia fali ultradźwiękowej wywołanych efektem Dopplera.

Fala emitowana jest naprzemiennie pomiędzy dwoma czujnikami pomiarowymi zamontowanymi na rurociągu. W przypadku braku przepływu czasy przejścia fali w obu kierunkach są jednakowe. Gdy fala rozchodzi się przeciwnie do kierunku płynącej cieczy, prędkość propagacji jest mniejsza niż w kierunku zgodnym z ruchem cieczy.

Wzór:

gdzie:

Mierzona przez system różnica czasów przejścia jest proporcjonalna do prędkości cieczy w rurociągu i po uwzględnieniu profilu i pola przekroju poprzecznego rury pozwala wyznaczyć objętość strumienia.

Zalety:

Przepływ stacjonarny (ang. steady flow) – ruch płynu, w którym składowe wektora prędkości nie są funkcjami czasu. Inaczej mówiąc, przepływ stacjonarny to ruch płynu nie zmieniający się w czasie.

Przeciwieństwem przepływu stacjonarnego jest przepływ niestacjonarny.

W przepływie stacjonarnym cząstki płynu poruszają się po liniach prądu, tj. linie prądu pokrywają się z trajektoriami cząstek płynu.

Przepływ stacjonarny może odbywać się z różnymi, na ogół niezbyt wysokimi prędkościami. Jednym z warunków jego istnienia jest zachowanie laminarności przepływu.

przepływach turbulentnych stacjonarny ruch płynu jest z definicji niemożliwy. Czasami jednak używa się kontrowersyjnego określenia stacjonarny przepływ turbulentny w odniesieniu do ruchów płynu, w których prędkość średnia zachowuje stałą wartość w czasie, jak np. podczas turbulentnego przepływu przez rurę przy stałym wydatku przepływu.

Przepływ laminarny jest to przepływ uwarstwiony (cieczy lub gazu), w którym kolejne warstwy płynu nie ulegają mieszaniu (w odróżnieniu od ruchu turbulentnego, burzliwego). Przepływ taki zachodzi przy małych prędkościach przepływu, gdy liczba Reynoldsa nie przekracza tzw. wartości krytycznej.

Płyny newtonowskie - płyny, w których lepkość dynamiczna m nie zależy od prędkości ruchu (np. woda powierzchniowa) ich lepkość jest stała w danych warunkach ciśnienia i temperatury i nie zależy od naprężenia ścinającego t lub okresu trwania ścinania.

Płyny nienewtonowskie - ich lepkość dynamiczna m zależy od gradientu prędkości 

Płyn newtonowski (doskonale lepki), model lepkości płynu wprowadzony przez Isaaca Newtona wykazujący liniową zależność naprężenia ścinającego od szybkości ścinania:

gdzie:

Wzór wprowadzony został przez Newtona na podstawie danych doświadczalnych, przez późniejszych fizyków uzasadniony i wyprowadzony na podstawie teorii cząsteczkowej gazów. Znaczna część płynów, np. woda, gazy w tym i powietrze, zachowuje się jak płyny newtonowskie. Dla płynów newtonowskich lepkość nie zależy od szybkości ścinania, zależy natomiast od własności substancji tworzącej płyn i jego parametrów termodynamicznych takich jak temperatura i ciśnienie.

Istnieją płyny, zwane płynami nienewtonowskimi, które nie spełniają powyższej zależności, dla nich naprężenia nie są proporcjonalne do gradientu prędkości, co jest równoznaczne z tym, że współczynnik lepkości nie jest stały lecz jest funkcją gradientu prędkości.

Zależność naprężeń od gradientu prędkości przedstawiona na wykresie nosi nazwę krzywej płynięcia. Dla płynu newtonowskiego krzywa płynięcia jest prostą przechodzącą przez początek układu współrzędnych.

Jeżeli krzywa płynięcia jakiegoś płynu nie jest prostą przechodzącą przez początek układu współrzędnych płyn taki jest płynem nienewtonowskim, lecz płynem z granicą płynięcia. Płyn newtonowski można też traktować jako specjalny przypadek płynu nienewtonowskiego. W przemyśle chemicznym dużą rolę odgrywają płyny nienewtonowskie takie jak polimery czy emulsje.


Wyszukiwarka