Projekt wykonawczy płyta

  1. Projekt wykonawczy WARIANT A

    1. Płyta

  1. Dane wyjściowe

-beton C30/37 $f_{\text{ck}} = 30\ \lbrack\frac{N}{\text{mm}^{2}}\rbrack$ $f_{\text{cd}} = \frac{f_{\text{ck}}}{\gamma_{c}} = \frac{30}{1.4} = \mathbf{21.43}\ \lbrack\text{MPa}$]

-stal- gatunek stali: B500SP fyk = 500 [MPa] $f_{\text{yd}} = \frac{f_{\text{yk}}}{\gamma_{s}} = \frac{500}{1.15} = \mathbf{4}\mathbf{34.78}\ \lbrack\text{MPa}\rbrack$

-otulina, XC3, S4 cnom = cmin + cdev

$c_{\min} = max\left\{ \begin{matrix} c_{min,b = \phi} = 8mm \\ c_{min,dev} = 40mm \\ 10mm \\ \end{matrix} \right.\ $

cdev = 10mm

cnom = 40mm + 10mm=50mm

-otulina REI 60 a = 10 [mm]

  1. Zestawienie obciążeń:

Wyszczególnienie obciążeń Obciążenie charakterystyczne   Obciążenie obliczeniowe
warstwa grubość ciężar właściwy [kN/m2]
_______ [m] [kN/m3]
1.Posadzka przemysłowa Stonhard 0.0055 12.00 0.066
2.Gładź wyrównawcza 0.07 21.00 1.47
3. Styropian twardy 0.05 0.04 0.002
4. Izolacja z papy x1     0.05
5.Płyta żelbetowa 0.15 25.00 3.75
6. Tynk cementowo- wapienny 0.02 19.00 0.38
SUMA 5.718    
      gk
7.Obciążenie zmienne     9
      qk
  1. Obliczenia statyczne:

Schemat statyczny:

Wyliczamy długości obliczeniowe przęseł, które dla wynoszą odpowiednio:


leff1 = ln1 + 2ai


leff2 = ln2 + 2ai


ai = min{0,5hf;0,5t} = min{0.075m;0.125m} = 0.075m


leff1 = 1, 50m + 2 • 0.075m = 1.65m


leff2 = 2.05m + 2 • 0.075m = 2.2m

PRĘTY:

OBCIĄŻENIA:

ZAWSZE:

EWENTUALNIE:

  1. Wymiarowanie płyty ze względu na zginanie:

MOMENTY-OBWIEDNIE:

Momenty przęsłowe:

MEdA − B = 5.377 kNm MEdB − C = 6.609 kNm MEdC − D = 6.790 kNm

Momenty podporowe:

MEdB = −8.995 kNm MEdC = −10.278 kNm MEdD = −10.284 kNm

Momenty krawędziowe:

$M_{\text{Ed}}^{B,\text{kr}} = \max\left\{ \begin{matrix} {|M}_{\text{Ed}}^{\text{BL},\text{kr}} \\ \end{matrix} \right.\ |;{|M}_{\text{Ed}}^{\text{BP},\text{kr}}|\}$ MEdBL, kr = −7.356 kN MEdBP, kr = −7.219 kN

$M_{\text{Ed}}^{C,\text{kr}} = \max\left\{ \begin{matrix} {|M}_{\text{Ed}}^{\text{CL},\text{kr}}|;|M_{\text{Ed}}^{\text{CP},\text{kr}}|\} \\ \end{matrix} \right.\ $ MEdCL, kr = −8.475 kN MEdCP, kr = −8.447 kN

MEdD, kr = |MEdDL, kr| MEdDL, kr = −8.467 kN


MEdB,kr=7.356kN


MEdC,kr=8.475 kN


MEdD,kr=8.467 kN

Momenty przęsłowe minimalne:


MEdB − C,  min = −0.805 kNm


MEdC − D,  min = −1.414kNm

${\overset{\overline{}}{M}}_{B - C} = \frac{1}{3} \bullet \left( \left| M_{\text{Ed}}^{B - C,\ \min} \right| + \max\left\{ \left| M_{\text{Ed}}^{B} \right|;\left| M_{\text{Ed}}^{C} \right| \right\} \right) = \frac{1}{3} \bullet \left( \left| - 0.805 \right| + \max\left\{ 8.995;10.278 \right\} \right) = \frac{1}{3} \bullet \left( 0.805 + 10.278 \right) = 3.694\ \text{kNm}$

${\overset{\overline{}}{M}}_{C - D} = \frac{1}{3} \bullet \left( \left| M_{\text{Ed}}^{C - D,\ \min} \right| + \max\left\{ \left| M_{\text{Ed}}^{C} \right|;\left| M_{\text{Ed}}^{D} \right| \right\} \right) = \frac{1}{3} \bullet \left( \left| - 1.414 \right| + \max\left\{ 10.278;10.284 \right\} \right) = \frac{1}{3} \bullet \left( 1.414 + 10.284 \right) = 3.899\ \text{kNm}$

Wyliczenie powierzchni zbrojenia dla poszczególnych części schematu statycznego:

Z równań równowagi:

$(1)\ \sum_{}^{}X = 0 \Rightarrow \ f_{\text{cd}} \bullet b \bullet x_{\text{eff}} = A_{s1} \bullet f_{\text{yd}} \Rightarrow \ \ \ A_{s1} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}}$

$(2)\ \sum_{}^{}{M_{As1} = 0\ \ \Rightarrow \ \ f_{\text{cd}} \bullet b \bullet x_{\text{eff}} \bullet \left( d - 0.5 \bullet x_{\text{eff}} \right) = M_{\text{Ed}}}$

z równania (2) wyliczmy xeff i podstawiamy do równania (1)

dodatkowo sprawdzamy warunki:

$\left( 3 \right){\text{\ \ }\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} < \xi_{eff,lim}$ gdzie: $\xi_{\text{eff},\lim} = \frac{2,8}{3.5 + \frac{f_{\text{yd}}}{E_{s}}} = \frac{2,8}{3.5 + \frac{434.78}{200}} = 0,49$

$\left( 4 \right)\text{\ \ }A_{s,\min} = \max\left\{ \begin{matrix} 0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0,0013 \bullet b \bullet d \\ \end{matrix} \right.\ $ gdzie: $f_{\text{ctm}} = 0,3 \bullet f_{\text{ck}}^{\frac{2}{3}} = 0,3 \bullet 30^{\frac{2}{3}}\text{MPa} = 2,90\text{MPa}$


(5)As, max = 0, 04 • Ac = 0, 04 • b • hf = 0, 04 • 1, 0m • 0, 15m = 0, 006m2 = 60 cm2


(6) smax, slabs = min{3h;400mm} = min{450mm;400mm} = 400 mm

natomiast w miejscu występowania maksymalnego momentu:


(6)smax, slabs = min{2h;250mm} = min{300mm;250mm} = 250 mm

PRZĘSŁO A-B

b = 1,0 m


$$d = h_{f} - c_{\text{nom}} - \frac{\phi}{2} = 0.15 - 0.05 - 0.004 = 0.096m$$


MEd = MEdA − B = 5.377 kNm

zbrojenie dolne:


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1,0 \bullet x_{\text{eff}}\left( 0,096 - \frac{x_{\text{eff}}}{2} \right) = 5377\ \Rightarrow \ x_{\text{eff}} = 2,65\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1,0 \bullet 0,00265}{434.78} = 0,000131\ m^{2} = 1,31\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{2,65}{96} = 0,028 < \xi_{\text{eff},\lim} = 0,49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0,26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0,0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0,26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0,096 \\ 0,0013 \bullet 1 \bullet 0,096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0,000145\ m^{2} \\ 0,000125\ m^{2} \\ \end{matrix} = 0,000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1, 45 cm2 > As1 = 1, 31cm2

Wymagana powierzchnia zbrojenia As, min = 1, 45 cm2/mb

PRZĘSŁO B-C

b = 1,0 m


$$d = h_{f} - c_{\text{nom}} - \frac{\phi}{2} = 0.15 - 0.05 - 0.004 = 0.096m$$


MEd = MEdB − C = 6.609 kNm


$${\overset{\overline{}}{M}}_{B - C} = 3.694\ \text{kNm}$$

zbrojenie dolne:


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.096 - \frac{x_{\text{eff}}}{2} \right) = 6609\ \Rightarrow \ x_{\text{eff}} = 3.27\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00327}{434.78} = 0.000161\ m^{2} = 1.61\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{3.27}{96} = 0.034 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 1.61cm2

Wymagana powierzchnia zbrojenia As1 = 1.61cm2/mb

zbrojenie górne:


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = {\overset{\overline{}}{M}}_{B - C}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.096 - \frac{x_{\text{eff}}}{2} \right) = 3694\ \Rightarrow \ x_{\text{eff}} = 1.81\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00181}{434.78} = 0.000089\ m^{2} = 0.89\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{1.81}{96} = 0.019 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 > As1 = 0.89cm2

Wymagana powierzchnia zbrojenia As, min = 1, 45 cm2/mb

PRZĘSŁO C-D

b = 1,0 m


$$d = h_{f} - c_{\text{nom}} - \frac{\phi}{2} = 0.15 - 0.05 - 0.004 = 0.096m$$


MEd = MEdC − D = 6.79 kNm


$${\overset{\overline{}}{M}}_{C - D} = 3.899\ \text{kNm}$$

zbrojenie dolne:


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.096 - \frac{x_{\text{eff}}}{2} \right) = 6790\ \Rightarrow \ x_{\text{eff}} = 3.36\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00336}{434.78} = 0.000166\ m^{2} = 1.66\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{3.36}{96} = 0.035 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 1.616

Wymagana powierzchnia zbrojenia As1 = 1.66cm2/mb

zbrojenie górne:


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = {\overset{\overline{}}{M}}_{C - D}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.096 - \frac{x_{\text{eff}}}{2} \right) = 3899\ \Rightarrow \ x_{\text{eff}} = 1.91\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00191}{434.78} = 0.000094\ m^{2} = 0.94\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{1.91}{96} = 0.020 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 > As1 = 0.94cm2

Wymagana powierzchnia zbrojenia As, min = 1, 45 cm2/mb

PODPORA B

Od momentu podporowego

b=1,0 m

bz = 250mm


MEd = MEdB = 8.995 kNm


$$d = 96\ \text{mm} + \frac{250\text{mm}}{6} = 138\text{mm}$$


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.138 - \frac{x_{\text{eff}}}{2} \right) = 8995\ \Rightarrow \ x_{\text{eff}} = 3.08\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00308}{434.78} = 0.000152\ m^{2} = 1.52\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{3.08}{138} = 0.022 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 1.52 cm2

Wymagana powierzchnia zbrojenia As1 = 1.52 cm2/mb

Od momentu krawędziowego

b=1,0 m

MEd = MEdB, kr = 7.356kN


d = 96 mm


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.096 - \frac{x_{\text{eff}}}{2} \right) = 7356\ \Rightarrow \ x_{\text{eff}} = 3.64\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00364}{434.78} = 0.000179\ m^{2} = 1.79\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{3.64}{96} = 0.035 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 1.79cm2

Wymagana powierzchnia zbrojenia As1 = 1.79cm2

Zbrojenie wyliczone z momentu krawędziowego jest większe - przyjęto As1 = 1.79 cm2/mb

PODPORA C

Od momentu podporowego

b=1,0 m

bz = 250mm


MEd = MEdC = 10.278 kNm


$$d = 96\ \text{mm} + \frac{250\text{mm}}{6} = 138\text{mm}$$


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.138 - \frac{x_{\text{eff}}}{2} \right) = 10278\ \Rightarrow \ x_{\text{eff}} = 3.52\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00352}{434.78} = 0.000173\ m^{2} = 1.73\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{3.52}{96} = 0.026 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 1.73 cm2

Wymagana powierzchnia zbrojenia As1 = 1.73cm2

Od momentu krawędziowego

b=1,0 m

MEd = MEdC, kr = 8.475kN


d = 96 mm


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.096 - \frac{x_{\text{eff}}}{2} \right) = 8475\ \Rightarrow \ x_{\text{eff}} = 4.21\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00421}{434.78} = 0.000208\ m^{2} = 2.08\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{4.21}{96} = 0.044 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 2.08cm2

Wymagana powierzchnia zbrojenia As1 = 2.08cm2

Zbrojenie wyliczone z momentu krawędziowego jest większe - przyjęto As1 = 2.08 cm2/mb

PODPORA D

Od momentu podporowego

b=1,0 m

bz = 250mm


MEd = MEdC = 10.284 kNm


$$d = 96\ \text{mm} + \frac{250\text{mm}}{6} = 138\text{mm}$$


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.138 - \frac{x_{\text{eff}}}{2} \right) = 10278\ \Rightarrow \ x_{\text{eff}} = 3.52\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00352}{434.78} = 0.000173\ m^{2} = 1.73\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{3.52}{96} = 0.026 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 1.73 cm2

Wymagana powierzchnia zbrojenia As1 = 1.73cm2

Od momentu krawędziowego

b=1,0 m

MEd = MEdD, kr = 8.467kN


d = 96 mm


$${\left( 2 \right)f}_{\text{cd}} \bullet b \bullet x_{\text{eff}}\left( d - \frac{x_{\text{eff}}}{2} \right) = M_{\text{Ed}}\ \Rightarrow \ 21.43 \bullet 10^{6} \bullet 1.0 \bullet x_{\text{eff}}\left( 0.096 - \frac{x_{\text{eff}}}{2} \right) = 8467\ \Rightarrow \ x_{\text{eff}} = 4.21\ \text{mm}$$


$${\left( 1 \right)A}_{s_{1}} = \frac{f_{\text{cd}} \bullet b \bullet x_{\text{eff}}}{f_{\text{yd}}} = \frac{21.43 \bullet 1.0 \bullet 0,00421}{434.78} = 0.000208\ m^{2} = 2.08\text{cm}^{2}$$


$${\left( 3 \right)\xi}_{\text{eff}} = \frac{x_{\text{eff}}}{d} = \frac{4.21}{96} = 0.044 < \xi_{\text{eff},\lim} = 0.49$$

${\left( 4 \right)A}_{s,\min} = \max\left\{ \begin{matrix} 0.26 \bullet \frac{f_{\text{ctm}}}{f_{\text{yk}}} \bullet b \bullet d \\ 0.0013 \bullet b \bullet d \\ \end{matrix}\ \right.\ = \max\left\{ \begin{matrix} 0.26 \bullet \frac{2,90}{500} \bullet 1 \bullet 0.096 \\ 0.0013 \bullet 1 \bullet 0.096 \\ \end{matrix} \right.\ = \max\left\{ \begin{matrix} 0.000145\ m^{2} \\ 0.000125\ m^{2} \\ \end{matrix} = 0.000145 \right.\ \ m^{2} = 1,45\ \text{cm}^{2}$


As, min = 1.45 cm2 < As1 = 2.08cm2

Wymagana powierzchnia zbrojenia As1 = 2.08cm2

Zbrojenie wyliczone z momentu krawędziowego jest większe - przyjęto As1 = 2.08 cm2/mb

Przyjęcie zbrojenia

Odcinek Rodzaj zbrojenia Wymagana powierzchnia zbrojenia AS1 Powierzchnia przyjętego zbrojenia
cm2/mb cm2/mb
Przęsło A-B Zbrojenie dołem 1,21 2,08
Przęsło B-C Zbrojenie dołem 1,21
Przęsło C-C Zbrojenie dołem 1,23
Przęsło B-C Zbrojenie górą 1,21 1,39
Przęsło C-C Zbrojenie górą 1,21
Podpora B Zbrojenie górą 1,36 2,08
Podpora C Zbrojenie górą 1,48

Przyjęto następujące zbrojenie:

- dla zbrojenia przęsłowego dołem: 8 co 240 mm -> $A_{s_{1}} = \frac{0,50\text{cm}^{2}}{0,24m} = 2,08\ \text{cm}^{2}$

- dla zbrojenia przęsłowego góra: 8 co 360 mm -> $A_{s_{1}} = \frac{0,50\text{cm}^{2}}{0,36m} = 1,39\ \text{cm}^{2}$

- dla zbrojenia nad podporą: 8 co 240 mm -> $A_{s_{1}} = \frac{0,50\text{cm}^{2}}{0,24m} = 2,08\ \text{cm}^{2}$

Sprawdzenie płyty ze względu na ścinanie:

TNĄCE-OBWIEDNIE:


VEdmax = VEdCL = 19, 67 kN


$$\rho_{L} = \frac{A_{\text{SL}}}{b \bullet d}$$


$$V_{Rd,c} = max\left\{ \begin{matrix} \left\lbrack C_{Rd,c} \bullet k\left( 100\rho_{L}f_{\text{ck}} \right)^{\frac{1}{3}} + k_{1}\sigma_{\text{cp}} \right\rbrack b_{w} \bullet d \\ \left( v_{\min} + k_{1}\sigma_{\text{cp}} \right)b_{w} \bullet d \\ \end{matrix} \right.\ $$


$$C_{Rd,c} = \frac{0,18}{\gamma_{c}} = \frac{0,18}{1,4} = 0,13$$

$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{91}} = 2,48 > 2,0$, przyjęto k=2,0


$$v_{\min} = 0,035 \bullet k^{\frac{3}{2}} \bullet {f_{\text{ck}}}^{\frac{1}{2}} = 0,035 \bullet {2,0}^{\frac{3}{2}} \bullet 25^{\frac{1}{2}} = 0,49$$


$$\rho_{L} = \frac{A_{\text{SL}}}{b \bullet d} = \frac{0,000208}{1,0 \bullet 0,091} = 0,0023$$


fck = 25 MPa,      σcp = 0,      bw = b = 1000 mm


$$V_{Rd,c} = max\left\{ \begin{matrix} \left\lbrack 0,13 \bullet 2,0\left( 100 \bullet 0,0023 \bullet 25 \right)^{\frac{1}{3}} + k_{1} \bullet 0 \right\rbrack \bullet 1000 \bullet 91 = 42,39\ kN \\ \left( 0,49 + k_{1} \bullet 0 \right) \bullet 1000 \bullet 96 = 47,04\ kN \\ \end{matrix} \right.\ $$


VRd, c = 47, 04 kN

VEdmax = 19, 67 kN< VRd, c = 47, 04 kN

Płyta nie wymaga zbrojenia na ścinanie.

Sprawdzenie płyty ze względu na zginanie:


MEd, lt = 2, 738 kNm

Warunek:


$$\left( \frac{l_{eff2}}{d} \right) \leq \left( \frac{l_{\text{ef}f}}{d} \right)_{\max} \bullet K \bullet \frac{310}{\sigma_{s}}$$


$$\sigma_{s} = \frac{M_{Ed,lt}}{\zeta \bullet d \bullet A_{s_{1}}}$$


$$\rho = \frac{A_{S1}}{b \bullet d} = \frac{2,08}{100 \bullet 9,1} = 0,0023 = 0,23\%$$

ζ = 0, 9, bo ρ < 0, 5%


$$\sigma_{s} = \frac{2738}{0,9 \bullet 0,091 \bullet 0,000139} = 241 \bullet 10^{6}Pa = 241\ MPa$$


$$\frac{l_{eff2}}{d} = \frac{1920}{91} = 21,10$$


$$\left( \frac{l_{\text{eff}}}{d} \right)_{\max} \bullet K \bullet \frac{310}{\sigma_{s}} = 42,0 \bullet 1,5 \bullet \frac{310}{241} = 81,04$$

Warunek spełniony

Wyznaczenie długości zakotwienia prętów 1 na podporach skrajnych:


$$l_{b,rqd} = \frac{\varnothing}{4} \bullet \frac{\sigma_{\text{sd}}}{f_{\text{bd}}}$$

Dla σsd = fyd = 435 MPa

fctm = 0, 3 fck2/3 = 0, 3 • 252/3MPa=2,56MPa


fctd = 0, fctm = 1, 28MPa

fbd = 2, 23 • η1 • η1 • fctd = 2, 23 • 1, 0 • 1, 0 • 1, 28MPa = 2,85MPa


$$l_{b,rqd} = \frac{\varnothing}{4} \bullet \frac{\sigma_{\text{sd}}}{f_{\text{bd}}} = \frac{8}{4} \bullet \frac{435MPa}{2,85\ MPa} = 305mm$$


lbd = α1 • α2 • α3 • α4 • α5 • lb, rqd

Rodzaj zakotwienia: standardowa pętla


1 = 0, 7 ; cd = c = 25mm > 3 • ⌀ = 24mm


$$\alpha_{2} = 1 - 0,15 \bullet \frac{c_{d} - 3\varnothing_{}}{\varnothing} = 1 - 0,15 \bullet \frac{25 - 24}{8} = 0,981 > 0,7$$

Przyjęto 3 = 1


4 = 1

Przyjeto 5 = 1


2 • ∝3 • ∝5 = 0, 981 • 1 • 1 > 0, 7


lbd = 0, 7 • 0, 981 • 1 • 1 • 1 • 305mm = 209mm


dla pretow rozciaganych lbd, min = max{0,3lb, rqd ;10⌀ ; 100mm} = max{92 ;80 ; 100mm} = 100mm < lbd = 209mm


Wyszukiwarka