WIELKI WYBUCH
Wszystko, co istnieje we wszechświecie – galaktyki, gwiazdy, planety, czyli cała materia wszechświata, było kiedyś skupione w obiekcie o wymiarach znacznie mniejszych od ziarenka piasku. Jest to oczywiście tylko obrazowe przybliżenie, pewne porównanie, ponieważ trudno sobie wyobrazić ten obiekt o nieskończenie małych rozmiarach. Jednak naukowcy stworzyli taką właśnie teorię powstania wszechświata, która została nazwana teorią Wielkiego Wybuchu.
Zgodnie z tą teorią wszechświat nie istniał od zawsze (według starożytnych filozofów), lecz powstał w pewnym momencie w przeszłości i nie jest statyczny ani nieskończony. Ta teoria wydawała się tak niezwykła, że choć część z tych zagadnień zostało udowodnionych, to wielu badaczy nadal szuka dowodów, że mogłoby być inaczej. Dopiero odkrycia z początku XX wieku sprawiły, że teorie o pełnym ruchu we wszechświecie zaczęły przybierać realne kształty.
Już Isaac Newton, autor prawa powszechnej grawitacji, zauważył, że model statyczny nie zgadza się z ówczesną wiedzą. Zgodnie z jego odkryciem dwa dowolne ciała we wszechświecie przyciągają się z siłą, która jest tym większa, im większe są masy tych ciał i im mniejsza jest odległość między nimi. A zatem gwiazdy powinny przyciągać się wzajemnie - nie mogłyby więc pozostawać w spoczynku. Idea jednak tak bardzo kłóciła się z ogólnie przyjętymi poglądami, że Newton i jego następcy woleli tworzyć wymyślne koncepcje, by potwierdzić wygodną teorię, że wszechświat jest statyczny), niż szukać racjonalnego wytłumaczenia tej zagadki.
Niemiecki astronom Heinrich Wilhelm Olbers postawił pytanie: skoro wszechświat rozciąga się w nieskończoność w przestrzeni, a gwiazdy są równomiernie rozłożone, to dlaczego niebo jest ciemne? Patrząc niemal w każdym kierunku, obserwator powinien dostrzec światło gwiazd. Zagadkę, którą zadał Niemiec, nazwano paradoksem Olbersa. Sam twórca starał się wytłumaczyć ją w sposób typowy dla zwolenników statyczności wszechświata, że w kosmosie znajduje się materia, która pochłania część światła. Nawet Albert Einstein, obawiał się ośmieszenia i mimo że jego matematyczny model uzasadniał przekonanie, iż wszechświat kurczy się lub rozszerza, wolał go zmodyfikować. Wymyślił więc tak zwaną stałą kosmologiczną - siłę nie związaną z żadnym konkretnym źródłem, równoważącą przyciąganie materii znajdującej się we wszechświecie. Dzięki niej udało mu się dopasować wzory do idei wiecznego i nieskończonego wszechświata. Później, kiedy uzyskano materialne dowody na nieprawdziwość wielowiekowej koncepcji, Einstein przyznał, że włączenie stałej kosmologicznej do równań było największym błędem jego życia. Dowody podważające założenia o statycznym wszechświecie i potwierdzające prawdziwość teorii o jego rozszerzaniu się dostarczył w latach dwudziestych XX wieku amerykański astronom Edwin Powell Hubble. W 1924 roku Hubble przeprowadził obserwacje astronomiczne, które wykazały, że nasza Galaktyka nie jest jedyna we wszechświecie. Dowiódł on, że w rzeczywistości istnieje wiele innych, oddzielonych od siebie pustymi obszarami pustej przestrzeni. Przy okazji badania widma gwiazd w odległych galaktykach, zauważył, że widać w nim dokładnie te same układy kolorów, co w widmach gwiazd naszej Galaktyki. Z pewną różnicą: kolory te były przesunięte w kierunku czerwonego krańca widma o taką samą względną wartość długości fali. Hubble doszedł do wniosku, że docierające na Ziemię światło z ciał kosmicznych zawiera fale elektromagnetyczne o mniejszych częstotliwościach, (czyli przesunięte w kierunku czerwonego krańca widma), niż należałoby tego oczekiwać, gdyby źródło światła było nieruchome. A zatem przesunięcie ku czerwieni świadczyło, że galaktyki oddalają się od Ziemi. Udowodnienie ruchu galaktyk względem siebie nie zakończyło badań, ani nie rozwiało wątpliwości. Większość astronomów była przekonana, że poruszają się one zupełnie przypadkowo, w takim wypadku część widm powinna być przesunięta ku czerwieni, (gdy obiekty oddalały się od Ziemi), a część w stronę niebieskiego krańca, (gdy się do niej przybliżały). Ku powszechnemu zdumieniu okazało się, że prawie wszystkie widma są przesunięte ku czerwieni, a zatem przeważająca część galaktyk oddala się od Ziemi. Jeszcze bardziej zaskoczyło naukowców następne odkrycie Hubble'a, zgodnie, z którym wielkość przesunięcia widma ku czerwieni jest wprost proporcjonalna do odległości galaktyki. Im dalej znajduje się ona od Ziemi, tym większą ma prędkość i tym szybciej oddala się od obserwatora. A to już z całą pewnością oznaczało, że wszechświat nie pozostaje statyczny, lecz się rozszerza. Pojawiło się jednak kolejne pytanie: skoro wszystkie galaktyki oddalają się od Ziemi, to może nasza planeta zajmuje szczególne miejsce we wszechświecie? Myśl ta była przyjemna dla ludzkości, która przez wieki wierzyła w geocentryzm, jednak naukowcy wybrali postawę sceptyczną. Rosyjski fizyk Aleksander Friedmann stwierdził, że rozszerzanie się wszechświata przypomina nadmuchiwanie cętkowanego balonu: w miarę jego powiększania się odległość między dwiema dowolnymi cętkami wzrasta niezależnie od tego, w którym miejscu balonu się one znajdują; a zatem żadna z nich nie może być uznana za centrum. W dodatku im większa odległość między nimi, tym szybciej się od siebie oddalają. Było to obrazowe potwierdzenie przypuszczeń Hubble'a, jednocześnie wykluczające centralne miejsce Ziemi we wszechświecie. Belgijski uczony Georges Edouard Lemaître, który prowadził badania dotyczące rozszerzania się wszechświata równolegle z Friedmannem, twierdził, że skoro galaktyki się oddalają, to w przeszłości musiał istnieć stan, gdy znajdowały się blisko siebie. Było to bardzo dawno temu (zdaniem Friedmanna od ok. 10 do 20 mld lat temu); wtedy cała materia wszechświata koncentrowała się w jednym punkcie o ogromnej gęstości. Teorię tę nazwano Wielkim Wybuchem (ang. Big Bang - "Wielkie Bum"). Powstały dwa różniące się modele oparte na koncepcji rozszerzającego się wszechświata. Pierwszy z nich przewiduje, że wszechświat będzie rozszerzał się w nieskończoność. Zgodnie z drugim "ucieczka" galaktyk jest na tyle wolna, że grawitacja może zwolnić, a następnie zatrzymać ekspansję. W takim wypadku galaktyki zaczęłyby się zbliżać do siebie, a wszechświat zacząłby się kurczyć. Kiedy materia zostałaby ściśnięta w bardzo mały punkt o ogromnej gęstości, nastąpiłaby Wielka Zapaść. Wszechświat mógłby cyklicznie kurczyć się i rozszerzać.
Wszystkie modele dziś jednak ustąpiły wyraźnie Standardowemu Modelowi Kosmologicznemu inaczej nazwanemu Teorią Wielkiego Wybuchu. Obecnie jest to prawie powszechnie przyjmowany przez kosmologów model opisujący powstanie Wszechświata i jego dotychczasową historię. Pomysł bierze się z faktu, że Wszechświat się rozszerza, wobec tego kiedyś musiał być bardzo mały a jego gęstość bardzo duża. Początek ekspansji Wszechświata nazywamy właśnie Wielkim Wybuchem. Istniej kilka najważniejszych etapów w ewolucji Wszechświata zwanych erami. Podział na ery i ich nazwy różnią się od siebie w zależności od opracowania.
Era Plancka (Od 0 do 10-43sekundy)
W pierwszych 10-43 sekundy przy gęstość większej od 1097 kg/m3 einsteinowska teoria grawitacji nie obowiązuje i nie umiemy obecnie opisać zjawisk, jakie wtedy zachodziły. Być może dopiero nowa kwantowa teoria grawitacji, którą fizycy próbują stworzyć, opisze ten etap. Spodziewamy się jedynie, że temperatura i gęstość Wszechświata malały. Jako Wszechświat rozumiemy sumę materii i energii, bowiem godnie z teorią względności te dwie wielkości są sobie równoważne. W początkowych erach występowała zdecydowana dominacja energii nad materią. Na zakończenie ery Plancka temperatura wynosiła 1032 kelwinów.
Era plazmy kwarkowo - gluonowej (hadronowa) (Od 10-43 do 10-4 sekundy)
Na początku wszystkie oddziaływania, z wyjątkiem grawitacyjnego, czyli elektromagnetyczne, słabe i silne miały jednakowe znaczenie i były nieodróżnialne. Między tymi oddziaływaniami występowała symetria. Ten okres nazywa się wielką unifikacją. Symetria została złamana w chwili 10-35 sekundy, kiedy temperatura spadła do wartości 1028 kelwinów. Oddziaływanie silne oddzieliło się wtedy od oddziaływania słabego i elektromagnetycznego, a jego moc zaczęła przewyższać moc dwóch pozostałych, jak ma to miejsce i dzisiaj. Konsekwencją złamania symetrii było wydzielenie się wielkiej ilości energii. Od 10-35 do 10-33 sekundy wyzwolona energia spowodowała gwałtowne przyspieszenie ekspansji Wszechświata, które trwa do dziś. Proces gwałtownego rozszerzania się Wszechświata nazywamy inflacją. Doprowadziło to do wygładzenia wszelkich większych niejednorodności, jakie mogły istnieć we wcześniejszych fazach. Dlatego dzisiaj Wszechświat w dużych skalach jest jednorodny i izotropowy, czyli we wszystkich kierunkach wygląda tak samo.
Od czasu 10-33 sekundy ekspansja stała się znacznie wolniejsza, ale Wszechświat nadal zmniejszał swą gęstość i stygnął. Temperatura jednak była na tyle wysoka, że występowały wszystkie typy kwarków i była taka sama ilość antykwarków. Po obniżeniu się temperatury cięższe kwarki zaczęły się rozpadać, a lżejsze zaczęły się łączyć w hadrony. Najrozmaitsze odmiany hadronów znajdowały się w równowadze termodynamicznej ze sobą, nie tylko te najbardziej trwałe takie jak protony, neutrony, hiperony, piony, kaony, ale wiele krótko żyjących rezonansów. Poza cząstkami w dużych ilościach istniały antycząstki i energia. Nieustannie powstawały pary cząstka-antycząstka i jednocześnie zachodziła anihilacja tych par. Z powodu istnienia dużej ilości hadronów tę część ery nazywa się również erą hadronową.
Gdy temperatura malała coraz bardziej dominował proces anihilacji. W końcu wszystkie pary barion-antybarion uległy anihilacji za wyjątkiem protonów i neutronów, które pozostały do dziś. Można to wytłumaczyć z zasady łamania symetrii między cząstkami i antycząstkami.
Era leptonowa ( Od 10-4 sekundy do 10 sekund)
W poprzedniej erze istniały również leptony, ale stanowiły jedynie nic nieznaczącą domieszkę. Obecnie to leptony wysunęły się na pierwsze miejsce. Powstawały pary elektron-pozyton mion-antymion, taon-antytaon i odpowiednie pary neutrino-antyneutrino. Wraz ze spadkiem temperatury malał proces powstawania par lepton-atylepton, a więcej było procesów anihilacji. W pierwszej kolejności zanihilowały cięższe cząstki, czyli miony i taony. W tej erze neutrina praktycznie przestały oddziaływać z pozostała materią i rozproszyły się. Jest więc nadzieja, że w przyszłości wykryjemy je w postaci "reliktowych neutrin tła".
Pod koniec tej ery zaczęły rozpadać się neutrony, które są cząstkami nietrwałymi. Część z uniknęła zagładzie, łącząc się z protonami w stabilne jądra. Najpierw powstały jądra deuteru, z nich helu-3, a następnie cząstki alfa, czyli jądra helu-4 (powstały również nieliczne jądra litu). Jak się sądzi w tym czasie nie było warunków do powstania ciężkich jąder, ponieważ z początku było za mało cząstek alfa do syntezy, a później za mała gęstość materii. To z tego okresu pozostały międzygalaktyczne obłoki helowe. Proces ten trwał do około dziesięciu minut. Ten okres niektórzy oddzielają i nazywają erą nukleosyntezy.
Era promieniowania (Od 10 sekund do 300 000 lat)
Po około 10 sekund elektrony i ich antycząstki zanihilowały, pozostawiając niewielką nadwyżkę elektronów, której istnienie tłumaczymy również z zasady łamania symetrii. Zaczęła się era promieniowania, w której Wszechświat był wypełniony głównie fotonami z niewielką domieszką protonów i neutronów, oraz minimalnymi ilościami helu. Cząstki te nieustannie oddziaływały ze sobą i temperatura promieniowani była równa temperaturze materii, Wszechświat był nieprzezroczysty. Po około 10000 lat od Wielkiego Wybuchu energia zawarta w promieniowaniu stała się mniejsza od energii związanej z materią. Mówimy, że Wszechświat przestał być zdominowany przez promieniowanie, a stał się zdominowany przez materię. Po około 300000 latach temperatura spadła do wartości 3000 kelwinów. Wtedy średnia energia fotonów zmalała poniżej energii jonizacji atomu wodoru. Protony połączyły się wtedy trwale z elektronami w atomy, a fotony poruszały się niemal swobodnie bez żadnego oddziaływania, tworząc promieniowania tła, które można obserwować obecnie.
Era gwiazdowa (galaktyczna) (Od 300 000 lat do dzisiaj)
Od uwolnienia promieniowania aż do chwili, w której pojawiły się pierwsze gwiazdy (100 mln lat od Wielkiego Wybuchu), we Wszechświecie panowała niemal ciemność (epoka ciemności), ponieważ wodór był niezjonizowany. Pod osłoną ciemności toczyły się procesy, które doprowadziły do powstania galaktyk. Obecny zasięg informacji to około 1 miliard lat po Wielkim wybuchu. Stworzono wiele modeli powstawania galaktyk i ich układów, ale nadal proces tworzeni się galaktyk pozostaje zagadką. Po uwolnieniu promieniowania Wszechświat wypełniony był w miarę jednorodnym obłokiem wodoru z domieszką helu. Głównym oddziaływaniem, które zaczęło wówczas dominować, była siła grawitacji. Powstawały obłoki gazu, zagęszczające się stopniowo dzięki sile grawitacji, a między nimi powstawała próżnia kosmiczna z malejącą gęstością materii. Nie wiemy niestety, czy najpierw powstawały galaktyki, które potem łączyły się w gromady, czy też najpierw tworzyły się większe obiekty i później dzieliły na mniejsze. Być może oba procesy zachodziły jednocześnie? Nie wiemy nawet, czy zarodki galaktyk i ich gromad były przypadkowymi zagęszczeniami gazu, czy też istniały jakieś twory, na przykład skupiska ciemnej materii, wokół których gaz się zagęszczał. Być może zalążki galaktyk powstawały już w erze inflacji. Po uformowaniu galaktyk niestabilności grawitacyjne powodowały, że obłoki tęgo gazu zapadały się, tworząc pierwsze pokolenie gwiazd. Masy pierwszych gwiazd były bardzo duże, dlatego w końcowych stadiach ewolucji tych gwiazd powstają w nich jądra ciężkich pierwiastków takich jak węgiel, tlen, neon, krzem, siarka aż do żelaza włącznie. Podczas wybuchu supernowych zewnętrzne warstwy zostają rozerwane i przenikają do materii międzygwiazdowej. Powstają przy tym jeszcze cięższe pierwiastki. Każde kolejne pokolenie gwiazd powstających z zapadających się obłoków gazu, zawiera więc coraz większą ilość pierwiastków ciężkich. Proces wzbogacania materii międzygwiazdowej w pierwiastki ciężkie trwa do chwili obecnej. Słońce jest gwiazdą drugiej lub trzeciej generacji, dlatego zawiera w swym wnętrzu od 1% do 2% pierwiastków ciężkich. Pierwsze gwiazdy nie miały prawdopodobnie swoich układów planetarnych. Do formowania się planet potrzebne są krystaliczne ziarna pyłu. Ziarna te zlepiając się tworzą większe ciała, tak zwane planetozymale, będące zalążkami planet. Ponieważ pył zbudowany jest z pierwiastków ciężkich nie mógł istnieć w pierwszych fazach rozwoju galaktyki. Kiedy jednak wytworzyła się wystarczająca ilość pierwiastków ciężkich, z materii otaczających nowo powstałe gwiazdy zaczęły formować się planety.