trimirystyna analiza widma

TRIPLET I: $\delta = \frac{0,83519 + 0,85850 + 0,87976}{3} = 0,85782\ \lbrack ppm\rbrack$

J1 = (0,85850−0,83519) × 300, 1 [MHz] = 6, 995331 [Hz]

J2 = (0,87976−0,85850) × 300, 1 [MHz] = 6, 380126 [Hz]

$J = \left\lbrack \frac{0,87976 + 0,85850}{2} - \ \frac{0,85850 + 0,83519}{2} \right\rbrack \times 300,1\ \left\lbrack \text{MHz} \right\rbrack = 6,68773\ \lbrack Hz\rbrack$

0,87976 ppm (T, J = 6,68771 [Hz], J1 = 6,99531 [Hz], J2 = 6,380126 [Hz], przy C-1, C-30, C-45)

TRIPLET II: $\delta = \frac{1,56522 + 1,58501 + 1,60829}{3}$ = 1,586173 [ppm]

J1 = (1,58501−1,56522) × 300, 1 [MHz] = 5, 938979 [Hz]

J2 = (1,60829−1,58501) × 300, 1 [MHz] = 6, 986328 [Hz]

$J = \left\lbrack \frac{1,60829 + 1,58501}{2} - \ \frac{1,58501 + 1,56522}{2} \right\rbrack \times 300,1\ \left\lbrack \text{MHz} \right\rbrack = 6,462654\ \lbrack Hz\rbrack$

1,60829 ppm (T, J = 6,462654 [Hz], J1 = 5,938979 [Hz], J2 = 6,986328 [Hz], przy C-12, C-19, C-34)

MULTIPLET I: przy δ 2,3 ppm, pochodzi od protonów przy gr. karbonylowych (C-13, C-18, C-33)

Dublet dubletów I: $\delta = \ \frac{4,09136 + 4,11119 + 4,13095 + 4,15080}{4} = 4,121075\ \lbrack ppm\rbrack$

$J = \left\lbrack \frac{4,15080 + 4,13095}{2} - \ \frac{4,11119 + 4,09136}{2} \right\rbrack \times 300,1\ \left\lbrack \text{MHz} \right\rbrack = 11,88396\ \lbrack Hz\rbrack$

4,15080 ppm (DD, J = 11,88396 [Hz], przy C-15 (HA) i C-31 (HA))

Dublet dubletów II: $\delta = \ \frac{4,24485 + 4,25920 + 4,28447 + 4,29885}{4} = 4,2718425\ \lbrack\text{ppm}\rbrack$

$J = \left\lbrack \frac{4,29885 + 4,28447}{2} - \ \frac{4,25920 + 4,24485}{2} \right\rbrack \times 300,1\ \left\lbrack \text{MHz} \right\rbrack = 11,88636\ \lbrack Hz\rbrack$

4,29885 ppm (DD, J = 11,88636 [Hz], przy C-15 (HB) i C-31 (HB))

MULTIPLET II: przy δ 5,15 – 5,30 ppm, pochodzi od protonu przy węglu C-16


Wyszukiwarka