DowΓ³d tw o przeliczΊzie

THM. If (X.d) is metric separable, then it possesses a countable base.

Proof. Let {xn : nβ€„βˆˆβ€„N} be dense in X, and Kn, r denote an open ball with a center xn and positive rational radius r. Then B = {Kn, r : nβ€„βˆˆβ€„N,  rβ€„βˆˆβ€„Q+} is a countable family of sets.

To show that B is a base of (X,d) we need only to prove that for every xβ€„βˆˆβ€„X, Ρ > 0 there is some Kn, rβ€„βˆˆβ€„B which fulfills xβ€„βˆˆβ€„Kn, rβ€„βŠ‚β€„K(x, Ρ).

Let xβ€„βˆˆβ€„X, Ρ > 0. By the density of {xn : nβ€„βˆˆβ€„N} in X, there is xn , such that d(x,xn) < Ρ/3.

Let rβ€„βˆˆβ€„Q+ be such that d(x,xn) < r < Ρ/3. Then xβ€„βˆˆβ€„Kn, r. Now we prove that Kn, rβ€„βŠ‚β€„K(x,Ξ΅).

Assume that zβ€„βˆˆβ€„Kn, r. Hence d(z,xn) < r. Moreover, by the triangle inequality:

$d\left( z,x \right) \leq d\left( z,x_{n} \right) + d\left( x_{n},x \right) < r + r < \left( \frac{2}{3} \right)\varepsilon < \varepsilon$.

Remark. In the above proof we use the fact from our first lecture:

If (X, θ) is a topological space then

Bβ€„βŠ‚β€„ΞΈ is a base of (X,ΞΈ)  ⇔  (βˆ€x∈X)(βˆ€Ux∈θ)(βˆƒC∈B)Β Β xβ€„βˆˆβ€„Cβ€„βŠ‚β€„UΒ .

(UxΒ denotes a neighborhood of x)


Wyszukiwarka