PROJ2 WYTRZYM

Zadanie 4

Dane:


γ = 168   β = 26   α = 50

Położenia osi tensometrów a, b oraz c można przedstawić jako osie powstałe w efekcie obrotów osi x układu współrzędnych odpowiednio o kąty:


φa = γ = 168


φb = γ − β = 168 − 50 = 118

φc = γ + α = 168 + 26 = 194(14)

Wyznaczone na drodze eksperymentu wielkości εa, εb oraz εc można traktować jako składowe stanu odkształcenia określone w układach obróconych względem osi układu xy. Muszą one więc spełniać następujące równania zapisane zgodnie z wzorami transformacyjnymi:


$$\varepsilon_{a} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) + \frac{1}{2}*\left( \varepsilon_{x} - \varepsilon_{y} \right)*\cos\left( 2\varphi_{a} \right) + \frac{1}{2}*\gamma_{\text{xy}}*sin(2\varphi_{a})$$


$$\varepsilon_{b} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) + \frac{1}{2}*\left( \varepsilon_{x} - \varepsilon_{y} \right)*\cos\left( 2\varphi_{b} \right) + \frac{1}{2}*\gamma_{\text{xy}}*sin(2\varphi_{b})$$


$$\varepsilon_{c} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) + \frac{1}{2}*\left( \varepsilon_{x} - \varepsilon_{y} \right)*\cos\left( 2\varphi_{c} \right) + \frac{1}{2}*\gamma_{\text{xy}}*sin(2\varphi_{c})$$


cos(2φa) = 0, 9135 sin(2φa) = −0, 4067


cos(2φb) = −0, 5592 sin(2φb) = −0, 8290


cos(2φc) = 0, 8829 sin(2φc) = 0, 4695


−455 * 10−6 = 0, 95675εx + 0, 04325εy − 0, 20335γxy


−461 * 10−6 = 0, 2204εx + 0, 7796εy − 0, 4145γxy


91 * 10−6 = 0, 94145εx + 0, 05855εy + 0, 23475γxy

Równanie rozwiązałem korzystając z programu Excel, wykorzystując obliczenia macierzowe


A * X = B

0,95675 0,04325 -20335 εx -455*10-6
0,2204 0,7796 -0,4145 x εy = -461*10-6
0,94145 0,05855 0,23475 γxy 91*10-6


X = A−1 * B

εx 0,000014 -0,081201 1,081187 -455*10-6
εy = -0,000030 1,305665 -0,305635 x -461*10-6
γxy -0,000049 -0,000001 0,000050 91*10-6


Wyniki :  εx = 135, 82 * 10−6


εy = −629, 71 * 10−6


γxy = 0, 03 * 10−6

Wyznaczenie kierunków odkształceń głównych:


$$\tan\left( 2\alpha \right) = \frac{\gamma_{\text{xy}}}{\varepsilon_{x} - \varepsilon_{y}} = \frac{0,03*10^{- 6}}{135,82*10^{- 6} + 629,71*10^{- 6}} = 39,19*10^{- 6}$$


2α = 0, 22  →   α = 0, 11

Wyznaczenie wartości odkształceń głównych:


$$\varepsilon_{1,2} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) \pm \frac{1}{2}\sqrt{\left( \varepsilon_{x} - \varepsilon_{y} \right)^{2} + \gamma_{\text{xy}}^{2}} = \frac{1}{2}*\left( 135,82*10^{- 6} - 629,71*10^{- 6} \right) \pm \frac{1}{2}\sqrt{\left( 135,82*10^{- 6} + 629,71*10^{- 6} \right)^{2} + \left( 0,03*10^{- 6} \right)^{2}} =$$


ε1 = 518, 56 * 10−6 


ε2 = −1012, 46 * 10−6

Wyznaczenie wartości naprężeń σx, σy oraz τxy:


$$\sigma_{x} = \frac{E}{1 - v^{2}}*\left( \varepsilon_{x} + v*\varepsilon_{y} \right) = \frac{61,68*10^{3}\text{MPa}}{1 - {0,15}^{2}}*\left( 135,82 - 0,15*629,71 \right)*10^{- 6} = 2,61M\text{Pa}$$


$$\sigma_{y} = \frac{E}{1 - v^{2}}*\left( \varepsilon_{y} + v*\varepsilon_{x} \right) = \frac{61,68*10^{3}\text{MPa}}{1 - {0,15}^{2}}*\left( - 629,71 + 0,15*135,82 \right)*10^{- 6} = - 38,45\text{MPa}$$


$$\tau_{\text{xy}} = G*\gamma_{\text{xy}} = \frac{E}{2*\left( 1 + v \right)}*\gamma_{\text{xy}} = \frac{61,68*10^{3}\text{MPa}}{2*\left( 1 + 0,15 \right)}*0,03*10^{- 6} = 804,52*10^{- 6}\text{MPa}$$

Zadanie 5

  1. Charakterystyki geometryczne

  1. Środek ciężkości

$\delta_{1} = \frac{L_{1}}{d} = \frac{8,50cm}{20} = 0,425cm$ $\delta_{2} = \frac{19,60cm}{20} = 0,98cm$

$\delta_{3} = \frac{10,4cm}{20} = 0,52cm$ $\delta_{4} = \frac{16,8cm}{20} = 0,84cm$


A = L1 * δ1 + L2 * δ2 + L3 * δ3 + L4 * δ4 = 8, 5cm * 0, 425cm + 19, 6cm * 0, 98cm + 10, 4cm * 0, 52cm + 16, 8cm * 0, 84cm = 42, 34cm2


Sy1 = L1 * δ1 * z1 + L2 * δ2 * z2 + L3 * δ3 * z3 + L4 * δ4 * z4 = 8, 5cm * 0, 425cm * 0 + 19, 6cm * 0, 98cm * 9, 8cm + 10, 4cm * 0, 52cm * 19, 6cm + 16, 8cm * 0, 84cm * 11, 2cm = 452, 29cm3


Sz1 = L1 * δ1 * y1 + L2 * δ2 * y2 + L3 * δ3 * y3 + L4 * δ4 * y4 = 8, 5cm * 0, 425cm * (−4,25cm) + 19, 6cm * 0, 98cm * 0 + 10, 4cm * 0, 52cm * (−5,2cm) + 16, 8cm * 0, 84cm * (−10,4cm) = −190, 24cm3


$$y_{c} = \frac{S_{z1}}{A} = \frac{- 190,24cm^{3}}{42,34cm^{2}} = - 4,49cm$$


$$z_{c} = \frac{S_{y1}}{A} = \frac{452,29cm^{3}}{42,34cm^{2}} = 10,68cm$$

  1. Centralne momenty bezwładności


$$I_{y0} = 8,5cm*0,425cm*\left( - 10,68cm \right)^{2} + \frac{0,98cm*\left( 19,6cm \right)^{3}}{12} + 19,6cm*0,98cm*\left( - 0,88cm \right)^{2} + 10,4cm*0,52cm*(8,92c{m)}^{2} + \frac{0,84cm*\left( 16,8cm \right)^{3}\ }{12} + 16,8cm*0,84cm*\left( 0,52cm \right)^{2} = 1807,86cm^{4}$$


$$I_{z0} = \frac{0,425cm*\left( 8,5cm \right)^{3}}{12} + 8,5cm*0,425cm*\left( 0,24cm \right)^{2} + 19,6cm*0,98cm*\left( 4,49cm \right)^{2} + \frac{0,52cm*\left( 10,4cm \right)^{3}}{12} + 10,4cm*0,52cm*\left( - 0,71cm \right)^{2} + 16,8cm*0,84cm*\left( - 5,91cm \right)^{2} = 953,57cm^{4}$$


Iy0z0 = 8, 5cm * 0, 425cm * ( − 10, 68cm)*0, 24cm + 19, 6cm * 0, 98cm * (−0,88cm) * 4, 49cm + 10, 4cm * 0, 52cm * 8, 92cm * (−071cm) + 16, 8cm * 0, 84cm * 0, 52cm * (−5,91cm) = −162, 77cm4

  1. Osie główne


$$\tan\left( 2\varphi_{0} \right) = - \frac{{2I}_{y0z0}}{I_{y0} - I_{\text{zo}}} = - \frac{2*( - 162,77\text{cm}^{4})}{1807,86\text{cm}^{4} - 953,57\text{cm}^{4}} = 0,381$$


2φ0 = arctan(0,381) = 20, 86


φ0 = 10, 43

  1. Wykresy współrzędnych


y(1) = (−8,5cm+4,49cm) * cos(10,43) + (0−10,68cm) * sin(10,43) = −5, 87cm


y(2) = (0+4,49cm) * cos(10,43) + (0−10,68cm) * sin(10,43) = 2, 48cm


y(3) = (0+4,49cm) * cos(10,43) + (19,6cm−10,68cm) * sin(10,43) = 6, 03cm


y(4) = (−10,4cm+4,49cm) * cos(10,43) + (19,6cm−10,68cm) * sin(10,43) = −4, 19cm


y(5) = (−10,4cm+4,49cm) * cos(10,43) + (19,6cm−16,8cm−10,68cm) * sin(10,43) = −7, 24cm


z(1) = −(−8,5cm+4,49cm) * sin(10,43) + (0−10,68cm) * cos(10,43) = −9, 78cm


z(2) = −(0+4,49cm) * sin(10,43) + (0−10,68cm) * cos(10,43) = −11, 32cm


z(3) = −(0+4,49cm) * sin(10,43) + (19,6cm−10,68cm) * cos(10,43) = 7, 96cm


z(4) = −(−10,4cm+4,49cm) * sin(10,43) + (19,6cm−10,68cm) * cos(10,43) = 9, 84cm


z(5) = −(−10,4cm+4,49cm) * sin(10,43) + (19,6cm−16,8cm−10,68cm) * cos(10,43) = −6, 68cm


ω(1) = −8, 5cm * 19, 6cm = −166, 6cm2 


ω(2) = 0     ω(3) = 0     ω(4) = 0


ω(5) = 10, 4cm * 16, 8cm = 174, 72cm2

  1. Momenty bezwładności


$$I_{y} = \frac{8,5cm}{6}*\left\lbrack 2*\left( \left( - 9,78cm \right)^{2} + \left( - 11,32cm \right)^{2} \right) + 2*\left( - 9,78cm \right)*\left( - 11,32cm \right) \right\rbrack*0,425cm$$


$$+ \frac{19,6cm}{6}*\left\lbrack 2*\left( \left( - 11,32cm \right)^{2} + \left( 7,96cm \right)^{2} \right) + 2*\left( - 11,32cm \right)*\left( 7,96cm \right) \right\rbrack*0,98cm$$


$$+ \frac{10,4cm}{6}*\left\lbrack 2*\left( \left( 7,96cm \right)^{2} + \left( 9,84cm \right)^{2} \right) + 2*\left( 7,96cm \right)*\left( 9,84cm \right) \right\rbrack*0,52cm$$


$$+ \frac{16,8cm}{6}*\left\lbrack 2*\left( \left( 9,84cm \right)^{2} + \left( - 6,68cm \right)^{2} \right) + 2*\left( 9,84cm \right)*\left( - 6,68cm \right) \right\rbrack*0,84cm = 1837,8cm^{4}$$


$$I_{z} = \frac{8,5cm}{6}*\left\lbrack 2*\left( \left( - 5,87cm \right)^{2} + \left( 2,48cm \right)^{2} \right) + 2*\left( - 5,87cm \right)*\left( 2,48cm \right) \right\rbrack*0,425cm$$


$$+ \frac{19,6cm}{6}*\left\lbrack 2*\left( \left( 2,48cm \right)^{2} + \left( 6,03cm \right)^{2} \right) + 2*\left( 2,48cm \right)*\left( 6,03cm \right) \right\rbrack*0,98cm$$


$$+ \frac{10,4cm}{6}*\left\lbrack 2*\left( \left( 6,03cm \right)^{2} + \left( - 4,19cm \right)^{2} \right) + 2*\left( 6,03cm \right)*\left( - 4,19cm \right) \right\rbrack*0,52cm$$


$$+ \frac{16,8cm}{6}*\left\lbrack 2*\left( \left( - 4,19cm \right)^{2} + \left( - 7,24cm \right)^{2} \right) + 2*\left( - 4,19cm \right)*\left( - 7,24cm \right) \right\rbrack*0,84cm = 923,6cm^{4}$$


$$K_{s} = \frac{1}{3}\sum_{}^{}{l_{i}\delta_{i}^{3} = \frac{1}{3}\left( 8,5cm*\left( 0,425cm \right)^{3} + \ 19,6cm*\left( 0,98cm \right)^{3} + \ 10,4cm*\left( 0,52cm \right)^{3}\ + 16,8cm*\left( 0,84cm \right)^{3} \right)} = 10,17cm^{4}$$


$$I_{\text{ωBy}} = \frac{8,5cm}{6}*0,425cm*\left\lbrack 2*\left( - 5,87cm \right)*\left( - 166,6cm^{2} \right) + 2,48cm*\left( - 166,6cm^{2} \right) \right\rbrack$$


$$+ \frac{16,8cm}{6}*0,84cm*\left\lbrack 2*\left( - 7,24cm \right)*\left( 174,72cm^{2} \right) + \left( - 4,19cm \right)*\left( 174,72cm^{2} \right) \right\rbrack = - 6741,95cm^{5}$$


$$I_{\text{ωBz}} = \frac{8,5cm}{6}*0,425cm*\left\lbrack 2*\left( - 9,78cm \right)*\left( - 166,6cm^{2} \right) + ( - 11,32cm)*\left( - 166,6cm^{2} \right) \right\rbrack$$


$$+ \frac{16,8cm}{6}*0,84cm*\left\lbrack 2*\left( - 6,68cm \right)*\left( 174,72cm^{2} \right) + 9,84cm*\left( 174,72cm^{2} \right) \right\rbrack = 1648,74cm^{5}$$

  1. Główny biegun wycinkowy


$$y^{(A)} = y^{(B)} + \alpha_{y} = 6,03cm + \frac{1648,74cm^{5}}{1837,8cm^{4}} = 6,03cm + 0,9cm = 6,93cm$$


$$z^{(A)} = z^{(B)} + \alpha_{z} = 7,96cm - \frac{- 6741,95cm^{5}}{923,6cm^{4}} = 7,96cm + 7,3cm = 15,26cm$$

  1. Główna współrzędna wycinkowa

  1. Współrzędne głównego bieguna wycinkowego w układzie osi centralnych


y0(A) = y(A) * cos(−φ) + z(A) * sin(−φ) = 6, 93cm * cos(−10,43) + 15, 26cm * sin(−10,43) = 4, 05cm


z0(A) = −y(A) * cos(−φ) + z(A) * sin(−φ) = −6, 93cm * sin(−10,43) + 15, 26cm * cos(−10,43) = 16, 26cm

  1. Współrzędne głównego bieguna wycinkowego w układzie osi początkowych


y1(A) = y0(A) + yC = 4, 05cm − 4, 49cm = −0, 44cm


z1(A) = z0(A) + zc = 16, 26cm + 10, 68cm = 26, 94cm

  1. Współrzędna ωA


ωA(3) = 0


ωA(2) = ωA(3) − |y1(A)| * L2 = 0 − 0, 44cm * 19, 6cm = −8, 61cm2


ωA(1) = ωA(2) − z1(A) * L1 = −8, 61cm2 − 26, 94cm * 8, 5cm = −237, 61cm2


ωA(4) = ωA(3) − (z1(A)L2) * L3 = 0 − (26,94cm−19,6cm) * 10, 4cm = −76, 35cm2


ωA(5) = ωA(4) + (L3−|y1(A)|) * L4 = −76, 35 + (10,4cm−0,44cm) * 16, 8cm = 90, 99cm2

  1. Moment statyczny współrzędnej ωA


$$S_{\text{ωA}} = L_{1}*\delta_{1}*\frac{\omega_{A}^{\left( 1 \right)} + \omega_{A}^{\left( 2 \right)}}{2} + L_{2}*\delta_{2}*\frac{\omega_{A}^{\left( 2 \right)} + \omega_{A}^{\left( 3 \right)}}{2} + L_{3}*\delta_{3}*\frac{\omega_{A}^{\left( 3 \right)} + \omega_{A}^{\left( 4 \right)}}{2} + L_{4}*\delta_{4}*\frac{\omega_{A}^{\left( 4 \right)} + \omega_{A}^{\left( 5 \right)}}{2} = 8,5cm*0,425cm*\frac{- 273,61cm^{2} - 8,61cm^{2}}{2} + 19,6cm*0,98cm*\frac{- 8,61cm^{2} + 0}{2} + 10,4cm*0,52cm*\frac{0 - 76,35cm^{2}}{2} + 16,8cm*0,84cm*\frac{- 76,35cm^{2} + 90,99cm^{2}}{2} = - 630,56cm^{4}$$

  1. Współrzędna ω – główna współrzędna wycinkowa


$$\omega = - \frac{S_{\text{ωA}}}{A} = - \frac{- 630,56cm^{4}}{42,34cm^{2}} = 14,89cm^{2}$$


ω(i) = ωA(i) + ω


ω(1) = −237, 61cm2 + 14, 89cm2 = −222, 72cm2


ω(2) = −8, 61cm2 + 14, 89cm2 = 6, 28cm2


ω(3) = 0 + 14, 89cm2 = 14, 89cm2


ω(4) = −76, 35cm2 + 14, 89cm2 = −61, 46cm2


ω(5) = 90, 99cm2 + 14, 89cm2 = 105, 88cm2

  1. Główny wycinkowy moment bezwładności


$$I_{\omega} = \frac{8,5cm}{6}*\left\lbrack 2*\left( \left( - 222,72cm^{2} \right)^{2} + \left( 6,28cm^{2} \right)^{2} \right) + 2*\left( - 222,72cm^{2} \right)*6,28cm^{2} \right\rbrack*0,425cm$$


$$+ \frac{19,6cm}{6}*\left\lbrack 2*\left( \left( 6,28cm^{2} \right)^{2} + \left( 14,89cm^{2} \right)^{2} \right) + 2*6,28cm^{2}*14,89cm^{2} \right\rbrack*0,98cm$$


$$+ \frac{10,4cm}{6}*\left\lbrack 2*\left( \left( 14,89cm^{2} \right)^{2} + \left( - 61,46cm^{2} \right)^{2} \right) + 2*14,89cm^{2}*\left( - 61,46cm^{2} \right) \right\rbrack*0,52cm$$


$$+ \frac{16,8cm}{6}*\left\lbrack 2*\left( \left( - 61,46cm^{2} \right)^{2} + \left( 105,88cm^{2} \right)^{2} \right) + 2*\left( - 61,46cm^{2} \right)*105,88cm^{2} \right\rbrack*0,84cm = 105818,12cm^{6}$$

  1. Współczynnik giętno-skrętny


$$\alpha = \sqrt{\frac{GK_{s}}{EI_{\omega}}} = \sqrt{0,4*\frac{10,17cm^{4}}{105818,12cm^{6}}} = 0,006201\frac{1}{\text{cm}} = 0,6201\frac{1}{m}$$

  1. Momenty statyczne odciętej części przekroju w punkcie C


y(c) = y(2) + ξ * (y(3)y(2)) = 2, 48cm + 0, 84 * (6,03cm−2,48cm) = 5, 46cm


z(c) = z(2) + ξ * (z(3)z(2)) = −11, 32cm + 0, 84 * (7,96cm+11,32cm) = 4, 87cm


ω(c) = ω(2) + ξ * (ω(3)ω(2)) = 6, 28cm2 + 0, 84 * (14,89cm2−6,28cm2) = 13, 51cm2

${\overset{\overline{}}{S}}_{y}^{(c)} = L_{1}*\delta_{1}*\frac{z^{\left( 1 \right)} + z^{\left( 2 \right)}}{2} + \xi*L_{2}*\delta_{2}*\frac{z^{\left( 2 \right)} + z^{\left( c \right)}}{2} = 8,5cm*0,425cm*\frac{- 9,78cm - 11,32cm}{2} + 0,84*19,6cm*0,98cm*\frac{- 11,32cm + 4,87cm}{2} = - 90,14cm^{3}$

${\overset{\overline{}}{S}}_{z}^{(c)} = L_{1}*\delta_{1}*\frac{y^{\left( 1 \right)} + y^{\left( 2 \right)}}{2} + \xi*L_{2}*\delta_{2}*\frac{y^{\left( 2 \right)} + y^{\left( c \right)}}{2} = 8,5cm*0,425cm*\frac{- 5,87cm + 2,48cm}{2} + 0,84*19,6cm*0,98cm*\frac{2,48cm + 5,46cm}{2} = 57,97cm^{3}$

${\overset{\overline{}}{S}}_{\omega}^{(c)} = L_{1}*\delta_{1}*\frac{\omega^{\left( 1 \right)} + \omega^{\left( 2 \right)}}{2} + \xi*L_{2}*\delta_{2}*\frac{\omega^{\left( 2 \right)} + \omega^{\left( c \right)}}{2} = 8,5cm*0,425cm*\frac{- 222,72cm^{2} + 6,28cm^{2}}{2} + 0,84*19,6cm*0,98cm*\frac{6,28cm^{2} + 13,51cm^{2}}{2} = - 231,25cm^{4}$

  1. Siły wewnętrzne

  1. Pochodzące od zginania: siły tnące i momenty zginające


Py = P * cosφ0 = 38kN * cos(10,43) = 37, 37kN


Pz = −P * sinφ0 = −38 * sin(10,43) = −6, 88kN

  1. Siły pochodzące od skręcania pręta cienkościennego: B, Mω, Ms


M = −Py * (z(1)z(A)) + Pz * (y(1)y(A)) = −37, 37kN * (−9,78cm−15,26cm) + ( − 6, 88kN)*(−5,87cm−6,93cm) = 10, 2381kNm

Przedział I:


$$M_{s} = \frac{- M}{2sinh(\alpha l)}\left\lbrack 2\left( \gamma - 1 \right)\sinh\left( \text{αl} \right) - \sinh\left( \alpha\left( \left( \gamma - 1 \right)l + x \right) \right) + sinh(\alpha\left( \left( 1 - \gamma \right)l + x \right)) \right\rbrack$$


$$B = \frac{- M}{\alpha sinh(\alpha l)}\sinh\left( \alpha\left( \gamma - 1 \right)l \right)sinh(\alpha x)$$


$$M_{\omega} = \frac{- M}{sinh(\alpha l)}\sinh\left( \alpha\left( \gamma - 1 \right)l \right)cosh(\alpha x)$$

Przedział II:


$$M_{s} = \frac{M}{2}\left\lbrack - 2\gamma + \frac{1}{sinh(\alpha l)}\left\lbrack \sinh\left( \alpha\left( \left( 1 + \gamma \right)l - x \right) \right) + sinh(\alpha\left( \left( \gamma - 1 \right)l + x \right)) \right\rbrack \right\rbrack$$


$$B = \frac{M}{\alpha\sinh\left( \text{αl} \right)}\sinh\left( \text{αγl} \right)\sinh\left( \alpha\left( l - x \right) \right)$$


$$M_{\omega} = \frac{- M}{sinh(\alpha l)}\sinh\left( \text{αγl} \right)cosh(\alpha\left( l - x \right))$$

Ms x
0 0
3,1178 0
3,0367 0,3552
2,7892 0,7104
2,3635 1,0656
1,7387 1,4208
1,2608 1,632
0,8844 1,776
0,8844 1,776
-0,4945 2,3808
-1,4046 2,9856
-1,9755 3,5904
-2,2886 4,1952
-2,3882 4,8
0 4,8
B x
0,0000 0
1,1932 0,3552
2,4445 0,7104
3,8149 1,0656
5,3711 1,4208
6,4151 1,632
7,1889 1,776
7,1889 1,776
4,8078 2,3808
3,1109 2,9856
1,8567 3,5904
0,8667 4,1952
0 4,8
x
0 0
3,3322 0
3,4133 0,3552
3,6608 0,7104
4,0865 1,0656
4,7113 1,4208
5,1892 1,632
5,5656 1,776
-4,6725 1,776
-3,2936 2,3808
-2,3835 2,9856
-1,8125 3,5904
-1,4995 4,1952
-1,3999 4,8
0 4,8
  1. Naprężenia

  1. Naprężenia normalne w przekroju α-α


$$\sigma_{x}^{(i)} = \frac{M_{y}}{I_{y}}*z^{\left( i \right)} - \frac{M_{z}}{I_{z}}*y^{\left( i \right)} + \frac{B}{I_{\omega}}*\omega^{(i)}$$


$$\sigma_{x}^{\left( 1 \right)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( - 9,78m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( - 5,87m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( - 222,72m^{2}*10^{- 4} \right) = - 1556,95MPa$$


$$\sigma_{x}^{(2)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( - 11,32m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( 2,48m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( 6,28m^{2}*10^{- 4} \right) = 185,01MPa$$


$$\sigma_{x}^{(3)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( 7,96m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( 6,03m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( 14,89m^{2}*10^{- 4} \right) = 310,65MPa$$


$$\sigma_{x}^{(4)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( 9,84m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( - 4,19m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( - 61,46m^{2}*10^{- 4} \right) = - 584,93MPa$$


$$\sigma_{x}^{(5)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( - 6,68m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( - 7,24m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( 105,88m^{2}*10^{- 4} \right) = 366,60MPa$$

punkt y(i) z(i) ω(i) σM σω σx
1 -5,87 -9,78 -222,72 -206,75 -1350,20 -1556,95
2 2,48 -11,32 6,28 146,91 38,10 185,01
3 6,03 7,96 14,89 220,36 90,28 310,65
4 -4,19 9,84 -61,46 -212,35 -372,58 -584,93
5 -7,24 -6,68 105,88 -275,31 641,91 366,60
  1. Naprężenia styczne w punkcie C


$$\tau_{s} = \frac{M_{s}}{K_{s}}*\delta = \frac{1,1434}{10,17m^{4}*10^{- 8}}*0,98m*10^{- 2} = 121,493MPa$$


$$\tau_{M + \omega} = - \left\lbrack \frac{T_{z}*\overset{\overline{}}{S_{y}}}{I_{y}*\delta} + \frac{T_{y}*\overset{\overline{}}{S_{z}}}{I_{z}*\delta} + \frac{M_{\omega}*\overset{\overline{}}{S_{\omega}}}{I_{\omega}*\delta} \right\rbrack = - \left\lbrack \frac{- 4,33kN*\left( - 90,14m^{3}*10^{- 6} \right)}{1837,8m^{4}*10^{- 8}*0,98m*10^{- 2}} + \frac{23,54kN*57,97m^{3}*10^{- 6}}{923,6m^{4}*10^{- 8}*0,98m*10^{- 2}} + \frac{5,1892kNm*\left( - 231,25m^{4}*10^{- 8} \right)}{105818,12m^{6}*10^{- 12}*0,98m*10^{- 2}} \right\rbrack = - \left\lbrack 2167,10kPa + 15076,47kPa - 11571,67kPa \right\rbrack = - 5671,9kPa = - 5,67MPa$$

Zadanie 6

  1. Postać wyboczenia

  1. Równanie różniczkowe osi odkształconej


przedzial I) 0 ≤ x ≤ 0, 48L


$$M_{y}\left( x \right) = M_{A} + V_{A}*x - \frac{1}{2}*qx^{2}$$


$$\text{EI}{w_{I}}^{''}\left( x \right) = - M_{A} - V_{A}*x + \frac{1}{2}*qx^{2}$$


$$\text{EI}{w_{I}}^{'}\left( x \right) = - M_{A}x - \frac{1}{2}*V_{A}*x^{2} + \frac{1}{6}*qx^{3} + C_{1}$$


$$\text{EI}w_{I}\left( x \right) = - {\frac{1}{2}M}_{A}x^{2} - \frac{1}{6}*V_{A}*x^{3} + \frac{1}{24}*qx^{4} + C_{1}x + D_{1}$$


przedzial II) 0, 48L ≤ x ≤ L


$$M_{y}\left( x \right) = M_{A} + V_{A}*x - \frac{1}{2}*qx^{2}$$


$$0,56EI{w_{\text{II}}}^{''}\left( x \right) = - M_{A} - V_{A}*x + \frac{1}{2}*qx^{2}$$


$$0,56EI{w_{\text{II}}}^{'}\left( x \right) = - M_{A}x - \frac{1}{2}*V_{A}*x^{2} + \frac{1}{6}*qx^{3} + C_{2}$$


$$0,56EIw_{\text{II}}\left( x \right) = - {\frac{1}{2}M}_{A}x^{2} - \frac{1}{6}*V_{A}*x^{3} + \frac{1}{24}*qx^{4} + C_{2}x + D_{2}$$

  1. Wyznaczenie stałych z warunków brzegowych

wI(0) = 0 -> D1 = 0

wI(0) = 0 -> C1 = 0

wII(L) = 0 -> $- M_{A}L - \frac{1}{2}*V_{A}*L^{2} + \frac{1}{6}*qL^{3} + C_{2} = 0$

wI(0,48L) = wII(0, 48L) -> $- {\frac{1}{2}M}_{A}\left( 0,48L \right)^{2} - \frac{1}{6}*V_{A}*\left( 0,48L \right)^{3} + \frac{1}{24}*q\left( 0,48L \right)^{4} = \frac{1}{0,56}*\left( - {\frac{1}{2}M}_{A}\left( 0,48L \right)^{2} - \frac{1}{6}*V_{A}*\left( 0,48L \right)^{3} + \frac{1}{24}*q\left( 0,48L \right)^{4} + C_{2}*\left( 0,48L \right) + D_{2} \right)$

wI′(0,48L) = wII′(0, 48L) -> $- M_{A}(0,48L) - \frac{1}{2}*V_{A}*\left( 0,48L \right)^{2} + \frac{1}{6}*q\left( 0,48L \right)^{3} = \frac{1}{0,56}* - M_{A}(0,48L) - \frac{1}{2}*V_{A}*\left( 0,48L \right)^{2} + \frac{1}{6}*q\left( 0,48L \right)^{3} + C_{2}$

$\sum_{}^{}Y = qL - V_{A} = 0$ -> VA = qL


$$1) - M_{A}L - \frac{1}{2}qL^{3} + \frac{1}{6}qL^{3} + C_{2} = 0$$


MA + C2 = 0, 33qL2

2)−0, 1152MAL2 − 0, 0184qL4 + 0, 0022qL4 = −0, 20571MAL2 − 0, 0329qL4 − 0, 0039qL4 + 0, 8571C2 + 1, 7857D2


0, 0905MAL2 − 0, 8571C2L − 1, 7857D2 = −0, 0127qL4


3)−0, 48MAL − 0, 1152qL3 + 0, 0184qL4 = −0, 8571MAL − 0, 2057qL3 + 0, 0329qL3 + 1, 7857C2


0, 3771MAL − 1, 786C2 = −0, 0760qL3

Równanie rozwiązałem korzystając z programu Excel, wykorzystując obliczenia macierzowe


A * X = B

-1 1 0 MAL2 0,3333
0,0905 -0,8571 -1,7857 x C2L = -0,0127
0,3771 -1,7857 0 D2 -0,0760


A−1 * B = X

-1,2677 0 -0,7099 0,3333 -0,3686
-0,2677 0 -0,7099 x -0,0127 = -0,0353
0,0642 -0,56 0,3048 -0,076 0,0054


Wyniki:


Ma = −0, 3686qL2


C2 = −0, 0353qL3


D2 = 0, 0054qL4

  1. Obciążenie krytyczne

  1. Kryterium energetyczne Timoshenki


LEI(w)2dx + ∫LN(w)2dx = 0


$$w_{I}^{'}\left( x \right) = \frac{1}{\text{EI}}\left( - 0,3686qL^{2}x - 0,5qL*x^{2} + \frac{1}{6}*qx^{3} \right)$$


$${w_{I}}^{''}\left( x \right) = \frac{1}{\text{EI}}\left( - 0,3686qL^{2} - qL*x + \frac{1}{2}*qx^{2} \right)$$


NI(x) = −2, 28P


$$w_{\text{II}}^{'}\left( x \right) = \frac{1}{0,56EI}\left( - 0,3686qL^{2}x - 0,5qL*x^{2} + \frac{1}{6}*qx^{3} - 0,0353qL^{3} \right)$$


$$w_{\text{II}}^{''}\left( x \right) = \frac{1}{0,56EI}*\left( - 0,3686qL^{2} - qL*x + \frac{1}{2}*qx^{2} \right)$$


NII(x) = −P


00, 48LEI(wI)2dx + ∫0, 48LL0, 56EI(wII)2dx − P00, 48L2, 28(wI)2dx − P0, 48LL(wII)2dx = 0

  1. Wartość krytyczna siły P


$$P_{\text{kr}} = \frac{I_{1} + I_{2}}{I_{3} + I_{4}}$$


I1 = 0, 161 * q2 * L5/EI


I2 = 0, 631*q2 * L5/EI


I3 = 0, 023*q2 * L7/EI2


I4 = 0, 469*q2 * L7/EI2


$$P_{\text{kr}} = \frac{I_{1} + I_{2}}{I_{3} + I_{4}} = \frac{\frac{0,161q^{2}L^{5}}{\text{EI}} + \frac{{0,631q^{2}L}^{5}}{\text{EI}}}{\frac{0,023q^{2}L^{7}}{EI^{2}} + \frac{0,469q^{2}L^{7}}{EI^{2}}} = 1,61\frac{\text{EI}}{L^{2}} = 1,61*\frac{1608}{{6,42}^{2}} = 62,80kN$$


$$\mu = \sqrt{\frac{\pi^{2}\text{EI}}{P_{\text{kr}}*L^{2}}} = \sqrt{\frac{\pi^{2}*1608}{62,8*{6,42}^{2}}} = 2,476$$


Wyszukiwarka