Zadanie 4
Dane:
γ = 168 β = 26 α = 50
Położenia osi tensometrów a, b oraz c można przedstawić jako osie powstałe w efekcie obrotów osi x układu współrzędnych odpowiednio o kąty:
φa = γ = 168
φb = γ − β = 168 − 50 = 118
φc = γ + α = 168 + 26 = 194(14)
Wyznaczone na drodze eksperymentu wielkości εa, εb oraz εc można traktować jako składowe stanu odkształcenia określone w układach obróconych względem osi układu xy. Muszą one więc spełniać następujące równania zapisane zgodnie z wzorami transformacyjnymi:
$$\varepsilon_{a} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) + \frac{1}{2}*\left( \varepsilon_{x} - \varepsilon_{y} \right)*\cos\left( 2\varphi_{a} \right) + \frac{1}{2}*\gamma_{\text{xy}}*sin(2\varphi_{a})$$
$$\varepsilon_{b} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) + \frac{1}{2}*\left( \varepsilon_{x} - \varepsilon_{y} \right)*\cos\left( 2\varphi_{b} \right) + \frac{1}{2}*\gamma_{\text{xy}}*sin(2\varphi_{b})$$
$$\varepsilon_{c} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) + \frac{1}{2}*\left( \varepsilon_{x} - \varepsilon_{y} \right)*\cos\left( 2\varphi_{c} \right) + \frac{1}{2}*\gamma_{\text{xy}}*sin(2\varphi_{c})$$
cos(2φa) = 0, 9135 sin(2φa) = −0, 4067
cos(2φb) = −0, 5592 sin(2φb) = −0, 8290
cos(2φc) = 0, 8829 sin(2φc) = 0, 4695
−455 * 10−6 = 0, 95675εx + 0, 04325εy − 0, 20335γxy
−461 * 10−6 = 0, 2204εx + 0, 7796εy − 0, 4145γxy
91 * 10−6 = 0, 94145εx + 0, 05855εy + 0, 23475γxy
Równanie rozwiązałem korzystając z programu Excel, wykorzystując obliczenia macierzowe
A * X = B
0,95675 | 0,04325 | -20335 | εx | -455*10-6 | ||
---|---|---|---|---|---|---|
0,2204 | 0,7796 | -0,4145 | x | εy | = | -461*10-6 |
0,94145 | 0,05855 | 0,23475 | γxy | 91*10-6 |
X = A−1 * B
εx | 0,000014 | -0,081201 | 1,081187 | -455*10-6 | ||
---|---|---|---|---|---|---|
εy | = | -0,000030 | 1,305665 | -0,305635 | x | -461*10-6 |
γxy | -0,000049 | -0,000001 | 0,000050 | 91*10-6 |
Wyniki : εx = 135, 82 * 10−6
εy = −629, 71 * 10−6
γxy = 0, 03 * 10−6
Wyznaczenie kierunków odkształceń głównych:
$$\tan\left( 2\alpha \right) = \frac{\gamma_{\text{xy}}}{\varepsilon_{x} - \varepsilon_{y}} = \frac{0,03*10^{- 6}}{135,82*10^{- 6} + 629,71*10^{- 6}} = 39,19*10^{- 6}$$
2α = 0, 22 → α = 0, 11
Wyznaczenie wartości odkształceń głównych:
$$\varepsilon_{1,2} = \frac{1}{2}*\left( \varepsilon_{x} + \varepsilon_{y} \right) \pm \frac{1}{2}\sqrt{\left( \varepsilon_{x} - \varepsilon_{y} \right)^{2} + \gamma_{\text{xy}}^{2}} = \frac{1}{2}*\left( 135,82*10^{- 6} - 629,71*10^{- 6} \right) \pm \frac{1}{2}\sqrt{\left( 135,82*10^{- 6} + 629,71*10^{- 6} \right)^{2} + \left( 0,03*10^{- 6} \right)^{2}} =$$
ε1 = 518, 56 * 10−6
ε2 = −1012, 46 * 10−6
Wyznaczenie wartości naprężeń σx, σy oraz τxy:
$$\sigma_{x} = \frac{E}{1 - v^{2}}*\left( \varepsilon_{x} + v*\varepsilon_{y} \right) = \frac{61,68*10^{3}\text{MPa}}{1 - {0,15}^{2}}*\left( 135,82 - 0,15*629,71 \right)*10^{- 6} = 2,61M\text{Pa}$$
$$\sigma_{y} = \frac{E}{1 - v^{2}}*\left( \varepsilon_{y} + v*\varepsilon_{x} \right) = \frac{61,68*10^{3}\text{MPa}}{1 - {0,15}^{2}}*\left( - 629,71 + 0,15*135,82 \right)*10^{- 6} = - 38,45\text{MPa}$$
$$\tau_{\text{xy}} = G*\gamma_{\text{xy}} = \frac{E}{2*\left( 1 + v \right)}*\gamma_{\text{xy}} = \frac{61,68*10^{3}\text{MPa}}{2*\left( 1 + 0,15 \right)}*0,03*10^{- 6} = 804,52*10^{- 6}\text{MPa}$$
Zadanie 5
Charakterystyki geometryczne
Środek ciężkości
$\delta_{1} = \frac{L_{1}}{d} = \frac{8,50cm}{20} = 0,425cm$ $\delta_{2} = \frac{19,60cm}{20} = 0,98cm$
$\delta_{3} = \frac{10,4cm}{20} = 0,52cm$ $\delta_{4} = \frac{16,8cm}{20} = 0,84cm$
A = L1 * δ1 + L2 * δ2 + L3 * δ3 + L4 * δ4 = 8, 5cm * 0, 425cm + 19, 6cm * 0, 98cm + 10, 4cm * 0, 52cm + 16, 8cm * 0, 84cm = 42, 34cm2
Sy1 = L1 * δ1 * z1 + L2 * δ2 * z2 + L3 * δ3 * z3 + L4 * δ4 * z4 = 8, 5cm * 0, 425cm * 0 + 19, 6cm * 0, 98cm * 9, 8cm + 10, 4cm * 0, 52cm * 19, 6cm + 16, 8cm * 0, 84cm * 11, 2cm = 452, 29cm3
Sz1 = L1 * δ1 * y1 + L2 * δ2 * y2 + L3 * δ3 * y3 + L4 * δ4 * y4 = 8, 5cm * 0, 425cm * (−4,25cm) + 19, 6cm * 0, 98cm * 0 + 10, 4cm * 0, 52cm * (−5,2cm) + 16, 8cm * 0, 84cm * (−10,4cm) = −190, 24cm3
$$y_{c} = \frac{S_{z1}}{A} = \frac{- 190,24cm^{3}}{42,34cm^{2}} = - 4,49cm$$
$$z_{c} = \frac{S_{y1}}{A} = \frac{452,29cm^{3}}{42,34cm^{2}} = 10,68cm$$
Centralne momenty bezwładności
$$I_{y0} = 8,5cm*0,425cm*\left( - 10,68cm \right)^{2} + \frac{0,98cm*\left( 19,6cm \right)^{3}}{12} + 19,6cm*0,98cm*\left( - 0,88cm \right)^{2} + 10,4cm*0,52cm*(8,92c{m)}^{2} + \frac{0,84cm*\left( 16,8cm \right)^{3}\ }{12} + 16,8cm*0,84cm*\left( 0,52cm \right)^{2} = 1807,86cm^{4}$$
$$I_{z0} = \frac{0,425cm*\left( 8,5cm \right)^{3}}{12} + 8,5cm*0,425cm*\left( 0,24cm \right)^{2} + 19,6cm*0,98cm*\left( 4,49cm \right)^{2} + \frac{0,52cm*\left( 10,4cm \right)^{3}}{12} + 10,4cm*0,52cm*\left( - 0,71cm \right)^{2} + 16,8cm*0,84cm*\left( - 5,91cm \right)^{2} = 953,57cm^{4}$$
Iy0z0 = 8, 5cm * 0, 425cm * ( − 10, 68cm)*0, 24cm + 19, 6cm * 0, 98cm * (−0,88cm) * 4, 49cm + 10, 4cm * 0, 52cm * 8, 92cm * (−071cm) + 16, 8cm * 0, 84cm * 0, 52cm * (−5,91cm) = −162, 77cm4
Osie główne
$$\tan\left( 2\varphi_{0} \right) = - \frac{{2I}_{y0z0}}{I_{y0} - I_{\text{zo}}} = - \frac{2*( - 162,77\text{cm}^{4})}{1807,86\text{cm}^{4} - 953,57\text{cm}^{4}} = 0,381$$
2φ0 = arctan(0,381) = 20, 86
φ0 = 10, 43
Wykresy współrzędnych
y(1) = (−8,5cm+4,49cm) * cos(10,43) + (0−10,68cm) * sin(10,43) = −5, 87cm
y(2) = (0+4,49cm) * cos(10,43) + (0−10,68cm) * sin(10,43) = 2, 48cm
y(3) = (0+4,49cm) * cos(10,43) + (19,6cm−10,68cm) * sin(10,43) = 6, 03cm
y(4) = (−10,4cm+4,49cm) * cos(10,43) + (19,6cm−10,68cm) * sin(10,43) = −4, 19cm
y(5) = (−10,4cm+4,49cm) * cos(10,43) + (19,6cm−16,8cm−10,68cm) * sin(10,43) = −7, 24cm
z(1) = −(−8,5cm+4,49cm) * sin(10,43) + (0−10,68cm) * cos(10,43) = −9, 78cm
z(2) = −(0+4,49cm) * sin(10,43) + (0−10,68cm) * cos(10,43) = −11, 32cm
z(3) = −(0+4,49cm) * sin(10,43) + (19,6cm−10,68cm) * cos(10,43) = 7, 96cm
z(4) = −(−10,4cm+4,49cm) * sin(10,43) + (19,6cm−10,68cm) * cos(10,43) = 9, 84cm
z(5) = −(−10,4cm+4,49cm) * sin(10,43) + (19,6cm−16,8cm−10,68cm) * cos(10,43) = −6, 68cm
ω(1) = −8, 5cm * 19, 6cm = −166, 6cm2
ω(2) = 0 ω(3) = 0 ω(4) = 0
ω(5) = 10, 4cm * 16, 8cm = 174, 72cm2
Momenty bezwładności
$$I_{y} = \frac{8,5cm}{6}*\left\lbrack 2*\left( \left( - 9,78cm \right)^{2} + \left( - 11,32cm \right)^{2} \right) + 2*\left( - 9,78cm \right)*\left( - 11,32cm \right) \right\rbrack*0,425cm$$
$$+ \frac{19,6cm}{6}*\left\lbrack 2*\left( \left( - 11,32cm \right)^{2} + \left( 7,96cm \right)^{2} \right) + 2*\left( - 11,32cm \right)*\left( 7,96cm \right) \right\rbrack*0,98cm$$
$$+ \frac{10,4cm}{6}*\left\lbrack 2*\left( \left( 7,96cm \right)^{2} + \left( 9,84cm \right)^{2} \right) + 2*\left( 7,96cm \right)*\left( 9,84cm \right) \right\rbrack*0,52cm$$
$$+ \frac{16,8cm}{6}*\left\lbrack 2*\left( \left( 9,84cm \right)^{2} + \left( - 6,68cm \right)^{2} \right) + 2*\left( 9,84cm \right)*\left( - 6,68cm \right) \right\rbrack*0,84cm = 1837,8cm^{4}$$
$$I_{z} = \frac{8,5cm}{6}*\left\lbrack 2*\left( \left( - 5,87cm \right)^{2} + \left( 2,48cm \right)^{2} \right) + 2*\left( - 5,87cm \right)*\left( 2,48cm \right) \right\rbrack*0,425cm$$
$$+ \frac{19,6cm}{6}*\left\lbrack 2*\left( \left( 2,48cm \right)^{2} + \left( 6,03cm \right)^{2} \right) + 2*\left( 2,48cm \right)*\left( 6,03cm \right) \right\rbrack*0,98cm$$
$$+ \frac{10,4cm}{6}*\left\lbrack 2*\left( \left( 6,03cm \right)^{2} + \left( - 4,19cm \right)^{2} \right) + 2*\left( 6,03cm \right)*\left( - 4,19cm \right) \right\rbrack*0,52cm$$
$$+ \frac{16,8cm}{6}*\left\lbrack 2*\left( \left( - 4,19cm \right)^{2} + \left( - 7,24cm \right)^{2} \right) + 2*\left( - 4,19cm \right)*\left( - 7,24cm \right) \right\rbrack*0,84cm = 923,6cm^{4}$$
$$K_{s} = \frac{1}{3}\sum_{}^{}{l_{i}\delta_{i}^{3} = \frac{1}{3}\left( 8,5cm*\left( 0,425cm \right)^{3} + \ 19,6cm*\left( 0,98cm \right)^{3} + \ 10,4cm*\left( 0,52cm \right)^{3}\ + 16,8cm*\left( 0,84cm \right)^{3} \right)} = 10,17cm^{4}$$
$$I_{\text{ωBy}} = \frac{8,5cm}{6}*0,425cm*\left\lbrack 2*\left( - 5,87cm \right)*\left( - 166,6cm^{2} \right) + 2,48cm*\left( - 166,6cm^{2} \right) \right\rbrack$$
$$+ \frac{16,8cm}{6}*0,84cm*\left\lbrack 2*\left( - 7,24cm \right)*\left( 174,72cm^{2} \right) + \left( - 4,19cm \right)*\left( 174,72cm^{2} \right) \right\rbrack = - 6741,95cm^{5}$$
$$I_{\text{ωBz}} = \frac{8,5cm}{6}*0,425cm*\left\lbrack 2*\left( - 9,78cm \right)*\left( - 166,6cm^{2} \right) + ( - 11,32cm)*\left( - 166,6cm^{2} \right) \right\rbrack$$
$$+ \frac{16,8cm}{6}*0,84cm*\left\lbrack 2*\left( - 6,68cm \right)*\left( 174,72cm^{2} \right) + 9,84cm*\left( 174,72cm^{2} \right) \right\rbrack = 1648,74cm^{5}$$
Główny biegun wycinkowy
$$y^{(A)} = y^{(B)} + \alpha_{y} = 6,03cm + \frac{1648,74cm^{5}}{1837,8cm^{4}} = 6,03cm + 0,9cm = 6,93cm$$
$$z^{(A)} = z^{(B)} + \alpha_{z} = 7,96cm - \frac{- 6741,95cm^{5}}{923,6cm^{4}} = 7,96cm + 7,3cm = 15,26cm$$
Główna współrzędna wycinkowa
Współrzędne głównego bieguna wycinkowego w układzie osi centralnych
y0(A) = y(A) * cos(−φ) + z(A) * sin(−φ) = 6, 93cm * cos(−10,43) + 15, 26cm * sin(−10,43) = 4, 05cm
z0(A) = −y(A) * cos(−φ) + z(A) * sin(−φ) = −6, 93cm * sin(−10,43) + 15, 26cm * cos(−10,43) = 16, 26cm
Współrzędne głównego bieguna wycinkowego w układzie osi początkowych
y1(A) = y0(A) + yC = 4, 05cm − 4, 49cm = −0, 44cm
z1(A) = z0(A) + zc = 16, 26cm + 10, 68cm = 26, 94cm
Współrzędna ωA
ωA(3) = 0
ωA(2) = ωA(3) − |y1(A)| * L2 = 0 − 0, 44cm * 19, 6cm = −8, 61cm2
ωA(1) = ωA(2) − z1(A) * L1 = −8, 61cm2 − 26, 94cm * 8, 5cm = −237, 61cm2
ωA(4) = ωA(3) − (z1(A)−L2) * L3 = 0 − (26,94cm−19,6cm) * 10, 4cm = −76, 35cm2
ωA(5) = ωA(4) + (L3−|y1(A)|) * L4 = −76, 35 + (10,4cm−0,44cm) * 16, 8cm = 90, 99cm2
Moment statyczny współrzędnej ωA
$$S_{\text{ωA}} = L_{1}*\delta_{1}*\frac{\omega_{A}^{\left( 1 \right)} + \omega_{A}^{\left( 2 \right)}}{2} + L_{2}*\delta_{2}*\frac{\omega_{A}^{\left( 2 \right)} + \omega_{A}^{\left( 3 \right)}}{2} + L_{3}*\delta_{3}*\frac{\omega_{A}^{\left( 3 \right)} + \omega_{A}^{\left( 4 \right)}}{2} + L_{4}*\delta_{4}*\frac{\omega_{A}^{\left( 4 \right)} + \omega_{A}^{\left( 5 \right)}}{2} = 8,5cm*0,425cm*\frac{- 273,61cm^{2} - 8,61cm^{2}}{2} + 19,6cm*0,98cm*\frac{- 8,61cm^{2} + 0}{2} + 10,4cm*0,52cm*\frac{0 - 76,35cm^{2}}{2} + 16,8cm*0,84cm*\frac{- 76,35cm^{2} + 90,99cm^{2}}{2} = - 630,56cm^{4}$$
Współrzędna ω – główna współrzędna wycinkowa
$$\omega = - \frac{S_{\text{ωA}}}{A} = - \frac{- 630,56cm^{4}}{42,34cm^{2}} = 14,89cm^{2}$$
ω(i) = ωA(i) + ω
ω(1) = −237, 61cm2 + 14, 89cm2 = −222, 72cm2
ω(2) = −8, 61cm2 + 14, 89cm2 = 6, 28cm2
ω(3) = 0 + 14, 89cm2 = 14, 89cm2
ω(4) = −76, 35cm2 + 14, 89cm2 = −61, 46cm2
ω(5) = 90, 99cm2 + 14, 89cm2 = 105, 88cm2
Główny wycinkowy moment bezwładności
$$I_{\omega} = \frac{8,5cm}{6}*\left\lbrack 2*\left( \left( - 222,72cm^{2} \right)^{2} + \left( 6,28cm^{2} \right)^{2} \right) + 2*\left( - 222,72cm^{2} \right)*6,28cm^{2} \right\rbrack*0,425cm$$
$$+ \frac{19,6cm}{6}*\left\lbrack 2*\left( \left( 6,28cm^{2} \right)^{2} + \left( 14,89cm^{2} \right)^{2} \right) + 2*6,28cm^{2}*14,89cm^{2} \right\rbrack*0,98cm$$
$$+ \frac{10,4cm}{6}*\left\lbrack 2*\left( \left( 14,89cm^{2} \right)^{2} + \left( - 61,46cm^{2} \right)^{2} \right) + 2*14,89cm^{2}*\left( - 61,46cm^{2} \right) \right\rbrack*0,52cm$$
$$+ \frac{16,8cm}{6}*\left\lbrack 2*\left( \left( - 61,46cm^{2} \right)^{2} + \left( 105,88cm^{2} \right)^{2} \right) + 2*\left( - 61,46cm^{2} \right)*105,88cm^{2} \right\rbrack*0,84cm = 105818,12cm^{6}$$
Współczynnik giętno-skrętny
$$\alpha = \sqrt{\frac{GK_{s}}{EI_{\omega}}} = \sqrt{0,4*\frac{10,17cm^{4}}{105818,12cm^{6}}} = 0,006201\frac{1}{\text{cm}} = 0,6201\frac{1}{m}$$
Momenty statyczne odciętej części przekroju w punkcie C
y(c) = y(2) + ξ * (y(3)−y(2)) = 2, 48cm + 0, 84 * (6,03cm−2,48cm) = 5, 46cm
z(c) = z(2) + ξ * (z(3)−z(2)) = −11, 32cm + 0, 84 * (7,96cm+11,32cm) = 4, 87cm
ω(c) = ω(2) + ξ * (ω(3)−ω(2)) = 6, 28cm2 + 0, 84 * (14,89cm2−6,28cm2) = 13, 51cm2
${\overset{\overline{}}{S}}_{y}^{(c)} = L_{1}*\delta_{1}*\frac{z^{\left( 1 \right)} + z^{\left( 2 \right)}}{2} + \xi*L_{2}*\delta_{2}*\frac{z^{\left( 2 \right)} + z^{\left( c \right)}}{2} = 8,5cm*0,425cm*\frac{- 9,78cm - 11,32cm}{2} + 0,84*19,6cm*0,98cm*\frac{- 11,32cm + 4,87cm}{2} = - 90,14cm^{3}$
${\overset{\overline{}}{S}}_{z}^{(c)} = L_{1}*\delta_{1}*\frac{y^{\left( 1 \right)} + y^{\left( 2 \right)}}{2} + \xi*L_{2}*\delta_{2}*\frac{y^{\left( 2 \right)} + y^{\left( c \right)}}{2} = 8,5cm*0,425cm*\frac{- 5,87cm + 2,48cm}{2} + 0,84*19,6cm*0,98cm*\frac{2,48cm + 5,46cm}{2} = 57,97cm^{3}$
${\overset{\overline{}}{S}}_{\omega}^{(c)} = L_{1}*\delta_{1}*\frac{\omega^{\left( 1 \right)} + \omega^{\left( 2 \right)}}{2} + \xi*L_{2}*\delta_{2}*\frac{\omega^{\left( 2 \right)} + \omega^{\left( c \right)}}{2} = 8,5cm*0,425cm*\frac{- 222,72cm^{2} + 6,28cm^{2}}{2} + 0,84*19,6cm*0,98cm*\frac{6,28cm^{2} + 13,51cm^{2}}{2} = - 231,25cm^{4}$
Siły wewnętrzne
Pochodzące od zginania: siły tnące i momenty zginające
Py = P * cosφ0 = 38kN * cos(10,43) = 37, 37kN
Pz = −P * sinφ0 = −38 * sin(10,43) = −6, 88kN
Siły pochodzące od skręcania pręta cienkościennego: B, Mω, Ms
M = −Py * (z(1)−z(A)) + Pz * (y(1)−y(A)) = −37, 37kN * (−9,78cm−15,26cm) + ( − 6, 88kN)*(−5,87cm−6,93cm) = 10, 2381kNm
Przedział I:
$$M_{s} = \frac{- M}{2sinh(\alpha l)}\left\lbrack 2\left( \gamma - 1 \right)\sinh\left( \text{αl} \right) - \sinh\left( \alpha\left( \left( \gamma - 1 \right)l + x \right) \right) + sinh(\alpha\left( \left( 1 - \gamma \right)l + x \right)) \right\rbrack$$
$$B = \frac{- M}{\alpha sinh(\alpha l)}\sinh\left( \alpha\left( \gamma - 1 \right)l \right)sinh(\alpha x)$$
$$M_{\omega} = \frac{- M}{sinh(\alpha l)}\sinh\left( \alpha\left( \gamma - 1 \right)l \right)cosh(\alpha x)$$
Przedział II:
$$M_{s} = \frac{M}{2}\left\lbrack - 2\gamma + \frac{1}{sinh(\alpha l)}\left\lbrack \sinh\left( \alpha\left( \left( 1 + \gamma \right)l - x \right) \right) + sinh(\alpha\left( \left( \gamma - 1 \right)l + x \right)) \right\rbrack \right\rbrack$$
$$B = \frac{M}{\alpha\sinh\left( \text{αl} \right)}\sinh\left( \text{αγl} \right)\sinh\left( \alpha\left( l - x \right) \right)$$
$$M_{\omega} = \frac{- M}{sinh(\alpha l)}\sinh\left( \text{αγl} \right)cosh(\alpha\left( l - x \right))$$
Ms | x |
---|---|
0 | 0 |
3,1178 | 0 |
3,0367 | 0,3552 |
2,7892 | 0,7104 |
2,3635 | 1,0656 |
1,7387 | 1,4208 |
1,2608 | 1,632 |
0,8844 | 1,776 |
0,8844 | 1,776 |
-0,4945 | 2,3808 |
-1,4046 | 2,9856 |
-1,9755 | 3,5904 |
-2,2886 | 4,1952 |
-2,3882 | 4,8 |
0 | 4,8 |
B | x |
---|---|
0,0000 | 0 |
1,1932 | 0,3552 |
2,4445 | 0,7104 |
3,8149 | 1,0656 |
5,3711 | 1,4208 |
6,4151 | 1,632 |
7,1889 | 1,776 |
7,1889 | 1,776 |
4,8078 | 2,3808 |
3,1109 | 2,9856 |
1,8567 | 3,5904 |
0,8667 | 4,1952 |
0 | 4,8 |
Mω | x |
---|---|
0 | 0 |
3,3322 | 0 |
3,4133 | 0,3552 |
3,6608 | 0,7104 |
4,0865 | 1,0656 |
4,7113 | 1,4208 |
5,1892 | 1,632 |
5,5656 | 1,776 |
-4,6725 | 1,776 |
-3,2936 | 2,3808 |
-2,3835 | 2,9856 |
-1,8125 | 3,5904 |
-1,4995 | 4,1952 |
-1,3999 | 4,8 |
0 | 4,8 |
Naprężenia
Naprężenia normalne w przekroju α-α
$$\sigma_{x}^{(i)} = \frac{M_{y}}{I_{y}}*z^{\left( i \right)} - \frac{M_{z}}{I_{z}}*y^{\left( i \right)} + \frac{B}{I_{\omega}}*\omega^{(i)}$$
$$\sigma_{x}^{\left( 1 \right)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( - 9,78m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( - 5,87m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( - 222,72m^{2}*10^{- 4} \right) = - 1556,95MPa$$
$$\sigma_{x}^{(2)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( - 11,32m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( 2,48m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( 6,28m^{2}*10^{- 4} \right) = 185,01MPa$$
$$\sigma_{x}^{(3)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( 7,96m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( 6,03m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( 14,89m^{2}*10^{- 4} \right) = 310,65MPa$$
$$\sigma_{x}^{(4)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( 9,84m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( - 4,19m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( - 61,46m^{2}*10^{- 4} \right) = - 584,93MPa$$
$$\sigma_{x}^{(5)} = \frac{- 7,07MN*10^{- 3}}{1837,8m^{4}*10^{- 8}}*\left( - 6,68m*10^{- 2} \right) - \frac{- 38,42MN*10^{- 3}}{923,6m^{4}*10^{- 8}}*\left( - 7,24m*10^{- 2} \right) + \frac{6,4151MNm*10^{- 3}}{105818,12m^{6}*10^{- 12}}*\left( 105,88m^{2}*10^{- 4} \right) = 366,60MPa$$
punkt | y(i) | z(i) | ω(i) | σM | σω | σx |
---|---|---|---|---|---|---|
1 | -5,87 | -9,78 | -222,72 | -206,75 | -1350,20 | -1556,95 |
2 | 2,48 | -11,32 | 6,28 | 146,91 | 38,10 | 185,01 |
3 | 6,03 | 7,96 | 14,89 | 220,36 | 90,28 | 310,65 |
4 | -4,19 | 9,84 | -61,46 | -212,35 | -372,58 | -584,93 |
5 | -7,24 | -6,68 | 105,88 | -275,31 | 641,91 | 366,60 |
Naprężenia styczne w punkcie C
$$\tau_{s} = \frac{M_{s}}{K_{s}}*\delta = \frac{1,1434}{10,17m^{4}*10^{- 8}}*0,98m*10^{- 2} = 121,493MPa$$
$$\tau_{M + \omega} = - \left\lbrack \frac{T_{z}*\overset{\overline{}}{S_{y}}}{I_{y}*\delta} + \frac{T_{y}*\overset{\overline{}}{S_{z}}}{I_{z}*\delta} + \frac{M_{\omega}*\overset{\overline{}}{S_{\omega}}}{I_{\omega}*\delta} \right\rbrack = - \left\lbrack \frac{- 4,33kN*\left( - 90,14m^{3}*10^{- 6} \right)}{1837,8m^{4}*10^{- 8}*0,98m*10^{- 2}} + \frac{23,54kN*57,97m^{3}*10^{- 6}}{923,6m^{4}*10^{- 8}*0,98m*10^{- 2}} + \frac{5,1892kNm*\left( - 231,25m^{4}*10^{- 8} \right)}{105818,12m^{6}*10^{- 12}*0,98m*10^{- 2}} \right\rbrack = - \left\lbrack 2167,10kPa + 15076,47kPa - 11571,67kPa \right\rbrack = - 5671,9kPa = - 5,67MPa$$
Zadanie 6
Postać wyboczenia
Równanie różniczkowe osi odkształconej
przedzial I) 0 ≤ x ≤ 0, 48L
$$M_{y}\left( x \right) = M_{A} + V_{A}*x - \frac{1}{2}*qx^{2}$$
$$\text{EI}{w_{I}}^{''}\left( x \right) = - M_{A} - V_{A}*x + \frac{1}{2}*qx^{2}$$
$$\text{EI}{w_{I}}^{'}\left( x \right) = - M_{A}x - \frac{1}{2}*V_{A}*x^{2} + \frac{1}{6}*qx^{3} + C_{1}$$
$$\text{EI}w_{I}\left( x \right) = - {\frac{1}{2}M}_{A}x^{2} - \frac{1}{6}*V_{A}*x^{3} + \frac{1}{24}*qx^{4} + C_{1}x + D_{1}$$
przedzial II) 0, 48L ≤ x ≤ L
$$M_{y}\left( x \right) = M_{A} + V_{A}*x - \frac{1}{2}*qx^{2}$$
$$0,56EI{w_{\text{II}}}^{''}\left( x \right) = - M_{A} - V_{A}*x + \frac{1}{2}*qx^{2}$$
$$0,56EI{w_{\text{II}}}^{'}\left( x \right) = - M_{A}x - \frac{1}{2}*V_{A}*x^{2} + \frac{1}{6}*qx^{3} + C_{2}$$
$$0,56EIw_{\text{II}}\left( x \right) = - {\frac{1}{2}M}_{A}x^{2} - \frac{1}{6}*V_{A}*x^{3} + \frac{1}{24}*qx^{4} + C_{2}x + D_{2}$$
Wyznaczenie stałych z warunków brzegowych
wI(0) = 0 -> D1 = 0
wI′(0) = 0 -> C1 = 0
wII′(L) = 0 -> $- M_{A}L - \frac{1}{2}*V_{A}*L^{2} + \frac{1}{6}*qL^{3} + C_{2} = 0$
wI(0,48L) = wII(0, 48L) -> $- {\frac{1}{2}M}_{A}\left( 0,48L \right)^{2} - \frac{1}{6}*V_{A}*\left( 0,48L \right)^{3} + \frac{1}{24}*q\left( 0,48L \right)^{4} = \frac{1}{0,56}*\left( - {\frac{1}{2}M}_{A}\left( 0,48L \right)^{2} - \frac{1}{6}*V_{A}*\left( 0,48L \right)^{3} + \frac{1}{24}*q\left( 0,48L \right)^{4} + C_{2}*\left( 0,48L \right) + D_{2} \right)$
wI′(0,48L) = wII′(0, 48L) -> $- M_{A}(0,48L) - \frac{1}{2}*V_{A}*\left( 0,48L \right)^{2} + \frac{1}{6}*q\left( 0,48L \right)^{3} = \frac{1}{0,56}* - M_{A}(0,48L) - \frac{1}{2}*V_{A}*\left( 0,48L \right)^{2} + \frac{1}{6}*q\left( 0,48L \right)^{3} + C_{2}$
$\sum_{}^{}Y = qL - V_{A} = 0$ -> VA = qL
$$1) - M_{A}L - \frac{1}{2}qL^{3} + \frac{1}{6}qL^{3} + C_{2} = 0$$
−MA + C2 = 0, 33qL2
2)−0, 1152MAL2 − 0, 0184qL4 + 0, 0022qL4 = −0, 20571MAL2 − 0, 0329qL4 − 0, 0039qL4 + 0, 8571C2 + 1, 7857D2
0, 0905MAL2 − 0, 8571C2L − 1, 7857D2 = −0, 0127qL4
3)−0, 48MAL − 0, 1152qL3 + 0, 0184qL4 = −0, 8571MAL − 0, 2057qL3 + 0, 0329qL3 + 1, 7857C2
0, 3771MAL − 1, 786C2 = −0, 0760qL3
Równanie rozwiązałem korzystając z programu Excel, wykorzystując obliczenia macierzowe
A * X = B
-1 | 1 | 0 | MAL2 | 0,3333 | ||
---|---|---|---|---|---|---|
0,0905 | -0,8571 | -1,7857 | x | C2L | = | -0,0127 |
0,3771 | -1,7857 | 0 | D2 | -0,0760 |
A−1 * B = X
-1,2677 | 0 | -0,7099 | 0,3333 | -0,3686 | ||
---|---|---|---|---|---|---|
-0,2677 | 0 | -0,7099 | x | -0,0127 | = | -0,0353 |
0,0642 | -0,56 | 0,3048 | -0,076 | 0,0054 |
Wyniki:
Ma = −0, 3686qL2
C2 = −0, 0353qL3
D2 = 0, 0054qL4
Obciążenie krytyczne
Kryterium energetyczne Timoshenki
∫LEI(w″)2dx + ∫LN(w′)2dx = 0
$$w_{I}^{'}\left( x \right) = \frac{1}{\text{EI}}\left( - 0,3686qL^{2}x - 0,5qL*x^{2} + \frac{1}{6}*qx^{3} \right)$$
$${w_{I}}^{''}\left( x \right) = \frac{1}{\text{EI}}\left( - 0,3686qL^{2} - qL*x + \frac{1}{2}*qx^{2} \right)$$
NI(x) = −2, 28P
$$w_{\text{II}}^{'}\left( x \right) = \frac{1}{0,56EI}\left( - 0,3686qL^{2}x - 0,5qL*x^{2} + \frac{1}{6}*qx^{3} - 0,0353qL^{3} \right)$$
$$w_{\text{II}}^{''}\left( x \right) = \frac{1}{0,56EI}*\left( - 0,3686qL^{2} - qL*x + \frac{1}{2}*qx^{2} \right)$$
NII(x) = −P
∫00, 48LEI(wI″)2dx + ∫0, 48LL0, 56EI(wII″)2dx − P∫00, 48L2, 28(wI′)2dx − P∫0, 48LL(wII′)2dx = 0
Wartość krytyczna siły P
$$P_{\text{kr}} = \frac{I_{1} + I_{2}}{I_{3} + I_{4}}$$
I1 = 0, 161 * q2 * L5/EI
I2 = 0, 631*q2 * L5/EI
I3 = 0, 023*q2 * L7/EI2
I4 = 0, 469*q2 * L7/EI2
$$P_{\text{kr}} = \frac{I_{1} + I_{2}}{I_{3} + I_{4}} = \frac{\frac{0,161q^{2}L^{5}}{\text{EI}} + \frac{{0,631q^{2}L}^{5}}{\text{EI}}}{\frac{0,023q^{2}L^{7}}{EI^{2}} + \frac{0,469q^{2}L^{7}}{EI^{2}}} = 1,61\frac{\text{EI}}{L^{2}} = 1,61*\frac{1608}{{6,42}^{2}} = 62,80kN$$
$$\mu = \sqrt{\frac{\pi^{2}\text{EI}}{P_{\text{kr}}*L^{2}}} = \sqrt{\frac{\pi^{2}*1608}{62,8*{6,42}^{2}}} = 2,476$$