Obliczenie prędkości przepływu wody w przewodzie tłocznym
V2 = $\sqrt{2g*\ \frac{1}{1 - m^{2}}*\frac{p_{1} - p_{2}}{\gamma_{w}}}$ [m/s]
Q = F1 * v1 = F2 * v2 = const
F1 * v1 = F2 * v2
v1 = $\frac{F_{2}}{F_{1}}$ * v2
F1 = $\frac{\pi d_{1}^{2}}{4}$ F1 = $\frac{\pi*{(0,4m)}^{2}}{4}$ = $\frac{3,14*0,16m^{2}}{4}$ = 0,1257
F2 = $\frac{\pi d_{2}^{2}}{4}$ F2 = $\frac{\pi*\ \left( 0,3m \right)^{2}}{4}$ = $\frac{3,14*0,09m^{2}}{4}$ = 0,0707
m = $\frac{F_{2}}{F_{1}}$ = $\frac{0,0707}{\ 0,1257}$ =0,5625
V2 = $\sqrt{2g*\ \frac{1}{1 - {0,5625}^{2}}*\frac{1,2*\ 10^{5}\ \text{Pa} - 1,1*\ 10^{5}\ \text{Pa}}{9810\ \frac{N}{m^{3}}}}$ [m/s] = $\sqrt{2*9,8\ \frac{m}{s^{2}}*1,46*\ \frac{120000\ \frac{N}{m^{2}} - \ 110000\ \frac{N}{m^{2}}}{9810\ \frac{N}{m^{3}}}} = \ \sqrt{19,6\ \frac{m}{s^{2}}*1,46*1,02m} = 5,4\ \frac{m}{s}$
v1 = m * v2
v1 = 0,5625 *$5,4\ \frac{m}{s}$ = 3,03 $\frac{m}{s}$
$$\frac{p_{1}}{\gamma_{w}} + \ \frac{v_{1}^{2}}{2g} = \ \frac{p_{2}}{\gamma_{w}} + \ \frac{v_{2}^{2}}{2g}$$
$$\frac{120000\frac{N}{m^{2}}}{9810\frac{N}{m^{3}}} + \ \frac{{(3,03\ \frac{m}{s})}^{2}}{2*9.8\frac{m}{s^{2}}} = \ \frac{110000\frac{N}{m^{2}}}{9810\frac{N}{m^{3}}} + \ \frac{{(5,4\frac{m}{s})}^{2}}{2*9.8\frac{m}{s^{2}}}$$
12,23+0,47=11,21+1,49
12,7=12,7
L=P
Obliczanie natężenia przepływu w układzie rurociągów
Q = F2 * v2
Q = k* $\frac{\pi d_{2}^{2}}{4}$ * $\frac{1}{1 - m^{2}}$ * $\sqrt{\frac{2g*\ H(\gamma_{\text{rt}} - \ \gamma_{w})}{\gamma_{w}}}$ [m3/s]
H = $\frac{p_{1} - p_{2}}{\gamma_{\text{rt}} - \ \gamma_{w}}$ [m]
H = $\frac{120000\ \frac{N}{m^{2}} - \ 110000\ \frac{N}{m^{2}}}{132886\frac{N}{m^{3}} - \ 9810\ \frac{N}{m^{3}}}$ = $\frac{10000\ \frac{N}{m^{2}}}{123076\frac{N}{m^{3}}}$ = 0,081m
Q = 0,96* $\frac{\pi*\ \left( 0,3m \right)^{2}}{4}$ * $\frac{1}{1 - {0,5625}^{2}}$ * $\sqrt{\frac{2*9,8\frac{m}{s^{2}}*\ 0,081m*\ (132886\frac{N}{m^{3}} - \ 9810\ \frac{N}{m^{3}})}{9810\frac{N}{m^{3}}}}$ =
0,96 * $\frac{3,14*0,09m^{2}}{4}$ * 1,46 * $\sqrt{\frac{19,6\frac{m}{s^{2}}*9969,16\ \frac{N}{m^{2}}}{9810\frac{N}{m^{3}}}}$ = 0,099 m2 * $\sqrt{19,92\ \frac{m^{2}}{s^{2}}}$ = 0,099m2 * 4,46 $\frac{m}{s}$ = 0,44 $\frac{m^{3}}{s}$
Dobór średnicy przewodu ssawnego
dsrz = $\sqrt{\frac{4Q}{\pi*\ v_{s}}}$ [m]
vs = 0,8 – 1,2 dla d≤ 250 mm
vs = 1,2 – 1,5 dla d>250 mm
ds = $\sqrt{\frac{4*\ 0,44\ \frac{m^{3}}{s}}{\pi*\ 1,3\ \frac{m}{s}}}$ = 0,43m =430mm
dsrz rzeczywiste = 450mm
vsrz = $\frac{4Q}{\pi*d_{\text{srz}}^{2}}$ = $\frac{4*\ 0,44\ \frac{m^{3}}{s}}{\pi*{(0,45m)}^{2}}$ = 2,77$\frac{m}{s}$
vsrz = 2,77$\frac{m}{s}$
Obliczenie strat ciśnienia
Straty liniowe
hstrl = λ * $\frac{L}{d}$ * $\frac{v^{2}}{2g}\ $[m]
ε = $\frac{1,2\text{mm}}{450\text{mm}}$ = 0,0027 ≈ 3*10-3
Re = $\frac{2,77\frac{m}{s}*0,45m}{1,57*\ 10^{- 6}\ \frac{m^{2}}{s}}$ = 793949,04 ≈ 8 * 105
λ = 0,0275
L1 = 14m
Vsrz = 2,77$\frac{m}{s}$
drz = 0,45m
hstrl1 = 0,0275 * $\frac{14m}{0,45m}$ * $\frac{{(2,77\frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 0,89 * 0,39m = 0,33m
L2 = 12m
Vsrz = 2,77$\frac{m}{s}$
drz = 0,45m
hstrl2 = 0,0275 * $\frac{12m}{0,45m}$ * $\frac{{(2,77\frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 0,69 * 0,39m = 0,29m
L3 = 21m
v1 = m * v2
v1 = 0,5625 *$5,4\ \frac{m}{s}$ = 3,03 $\frac{m}{s}$
d1 = 400mm = 0,4m
ε = $\frac{1,2\text{mm}}{400\text{mm}}$ = 0,003= 3*10-3
Re = $\frac{3,03\ \frac{m}{s}*0,4m}{1,57*\ 10^{- 6}\ \frac{m^{2}}{s}}$ = 771974,52≈ 8 * 105
λ = 0,028
hstrl3 = 0,028 * $\frac{21m}{0,4m}$ * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 1,47 * 0,47m = 0,69m
L4 = 10m
v1 = 3,03 $\frac{m}{s}$
d1 = 0,4m
hstrl4 = 0,028 * $\frac{10m}{0,4m}$ * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 0,7 * 0,47m = 0,33m
L5 = 21m
v1 = 3,03 $\frac{m}{s}$
d1 = 0,4m
hstrl5 = 0,028 * $\frac{21m}{0,4m}$ * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 1,47 * 0,47m = 0,69m
L6 = 390m
v1 = 3,03 $\frac{m}{s}$
d1 = 0,4m
hstrl6 = 0,028 * $\frac{390m}{0,4m}$ * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 27,3 * 0,47m = 12,79m
L7 = 15m
v1 = 3,03 $\frac{m}{s}$
d1 = 0,4m
hstrl7 = 0,028 * $\frac{15m}{0,4m}$ * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 1,05 * 0,47m = 0,49m
L8 = 4m
v1 = 3,03 $\frac{m}{s}$
d1 = 0,4m
hstrl8 = 0,028 * $\frac{4m}{0,4m}$ * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 0,28 * 0,47m = 0,13m
L9 = 5m
v1 = 3,03 $\frac{m}{s}$
d1 = 0,4m
hstrl9 = 0,028 * $\frac{5m}{0,4m}$ * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\ \frac{m}{s^{2}}}$ = 0,35 * 0,47m = 0,16m
Straty miejscowe
hstrM = ξ * $\frac{v^{2}}{2g}$ [m]
ξ1 = 3,1
v1 = $2,77\frac{m}{s}$
hstrM1 = 3,1 * $\frac{{(2,77\frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 1,21 [m]
ξ2 = 2,2
v1 = $2,77\frac{m}{s}$
hstrM2 = 2,2 * $\frac{{(2,77\frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 0,86 [m]
ξ3 = 0,30
v1 = $2,77\frac{m}{s}$
hstrM3 = 0,3 * $\frac{{(3,03\frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 0,14 [m]
ξ4 = 0,5
v1 = $3,03\frac{m}{s}$
hstrM4 = 0,5 * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 0,23 [m]
hstrM5 = $\frac{p}{\gamma_{w}}$ [m]
Δp=p1-p1’ [Pa]
p1’=$\frac{v_{2}^{'2}*\left( 1 - m^{2} \right)*\gamma_{w}}{2g}$ + p2 [Pa]
v2’= v2 – 2%v2
v2 = 5,4$\frac{m}{s}$
v2’= 5,4$\frac{m}{s}$– 2% (5,4$\frac{m}{s})$ = 5,292 m/s
p1’=$\frac{({5,292\ m/s)}^{2}*\left( 1 - {0,5625}^{2} \right)*9810\frac{N}{m^{3}}}{2*9,8\frac{m}{s^{2}}}$ + 1,1*105 $\frac{N}{m^{2}}$ = 2682,93 $\frac{N}{m^{2}}$ + 110000 $\frac{N}{m^{2}}$ = 112682,93 [Pa]
Δp=1,2*105 [Pa] - 112682,93 [Pa] = 120000 [Pa] - 112682,93 [Pa] = 7317,07 [Pa]
hstrM5 = $\frac{p}{\gamma_{w}}$ [m]=$\ \frac{7317,07\ \lbrack N/m^{2}\rbrack}{9810\frac{N}{m^{3}}}$= 0,75 [m]
ξ6 = 0,5
v1 = $3,03\frac{m}{s}$
hstrM6 = 0,5 * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 0,23 [m]
ξ7 = 2,2
v1 = $3,03\frac{m}{s}$
hstrM7 = 2,2 * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 1,03 [m]
ξ8 = 3,1
v1 = $3,03\frac{m}{s}$
hstrM8 = 2,3 * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 1,07 [m]
ξ9 = 2,2
v1 = $3,03\frac{m}{s}$
hstrM9 = 2,2 * $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 1,03 [m]
ξ10 = 1
v1 = $3,03\frac{m}{s}$
hstrM10 = 1* $\frac{{(3,03\ \frac{m}{s})}^{2}}{2*9,8\frac{m}{s^{2}}}$ = 0,47 [m]