Jacka kwiatostany o8

General Linear Models


General Linear Models

---------------------

Number of dependent variables: 1

Number of categorical factors: 3

Number of quantitative factors: 0



Analysis of Variance for kwiatostany_2008

-----------------------------------------------------------------------------

Source Sum of Squares Df Mean Square F-Ratio P-Value

-----------------------------------------------------------------------------

Model 12104,0 13 931,077 2,00 0,0733

Residual 10239,4 22 465,428

-----------------------------------------------------------------------------

Total (Corr.) 22343,4 35


Type III Sums of Squares

------------------------------------------------------------------------------------

Source Sum of Squares Df Mean Square F-Ratio P-Value

------------------------------------------------------------------------------------

powt2 1327,98 2 663,988 1,43 0,2615

podkladka 7022,41 5 1404,48 3,02 0,0319

root_pruning 976,563 1 976,563 2,10 0,1616

podkladka*root_pruning 2777,05 5 555,411 1,19 0,3446

Residual 10239,4 22 465,428

------------------------------------------------------------------------------------

Total (corrected) 22343,4 35

All F-ratios are based on the residual mean square error.


R-Squared = 54,1726 percent

R-Squared (adjusted for d.f.) = 27,0927 percent

Standard Error of Est. = 21,5738

Mean absolute error = 13,1389

Durbin-Watson statistic = 2,07215


Residual Analysis

---------------------------------

Estimation Validation

n 36

MSE 465,428

MAE 13,1389

MAPE 20,6682

ME 1,38161E-15

MPE -5,66444



The StatAdvisor

---------------

This pane summarizes the results of fitting a general linear

statistical model relating kwiatostany_2008 to 3 predictive factors.

Since the P-value in the first ANOVA table for kwiatostany_2008 is

less than 0.10, there is a statistically significant relationship

between kwiatostany_2008 and the predictor variables at the 90%

confidence level.


The second ANOVA table for kwiatostany_2008 tests the statistical

significance of each of the factors as it was entered into the model.

Notice that the highest P-value is 0,3446, belonging to B*C. Since

the P-value is greater or equal to 0.10, that term is not

statistically significant at the 90% or higher confidence level.

Consequently, you should consider removing B*C from the model.


The R-Squared statistic indicates that the model as fitted explains

54,1726% of the variability in kwiatostany_2008. The adjusted

R-squared statistic, which is more suitable for comparing models with

different numbers of independent variables, is 27,0927%. The standard

error of the estimate shows the standard deviation of the residuals to

be 21,5738. This value can be used to construct prediction limits for

new observations by selecting the Reports option from the text menu.

The mean absolute error (MAE) of 13,1389 is the average value of the

residuals. The Durbin-Watson (DW) statistic tests the residuals to

determine if there is any significant correlation based on the order

in which they occur in your data file. Since the DW value is greater

than 1.4, there is probably not any serious autocorrelation in the

residuals.


The output also summarizes the performance of the model in fitting

the data, and in predicting any values withheld from the fitting

process. It displays:

(1) the mean squared error (MSE)

(2) the mean absolute error (MAE)

(3) the mean absolute percentage error (MAPE)

(4) the mean error (ME)

(5) the mean percentage error (MPE)

Each of the statistics is based on the residuals. The first three

statistics measure the magnitude of the errors. A better model will

give a smaller value. The last two statistics measure bias. A better

model will give a value close to 0.0.




Table of Least Squares Means for kwiatostany_2008

with 95,0 Percent Confidence Intervals

--------------------------------------------------------------------------------

Stnd. Lower Upper

Level Count Mean Error Limit Limit

--------------------------------------------------------------------------------

GRAND MEAN 36 70,1806 3,59563 62,7237 77,6375

powt2

I 12 68,6944 6,22781 55,7787 81,6102

II 12 63,5972 6,22781 50,6815 76,5129

III 12 78,25 6,22781 65,3343 91,1657

podkladka

1 6 65,8333 8,80746 47,5677 84,0989

2 6 60,5556 8,80746 42,29 78,8211

3 6 89,2222 8,80746 70,9566 107,488

4 6 55,4722 8,80746 37,2066 73,7378

5 6 60,2778 8,80746 42,0122 78,5434

6 6 89,7222 8,80746 71,4566 107,988

root_pruning

+ 18 64,9722 5,08499 54,4266 75,5179

- 18 75,3889 5,08499 64,8432 85,9345

podkladka by root_pruning

1 + 3 44,0 12,4556 18,1686 69,8314

1 - 3 87,6667 12,4556 61,8352 113,498

2 + 3 54,4444 12,4556 28,613 80,2759

2 - 3 66,6667 12,4556 40,8352 92,4981

3 + 3 84,5556 12,4556 58,7241 110,387

3 - 3 93,8889 12,4556 68,0574 119,72

4 + 3 58,1667 12,4556 32,3352 83,9981

4 - 3 52,7778 12,4556 26,9463 78,6092

5 + 3 53,2222 12,4556 27,3908 79,0537

5 - 3 67,3333 12,4556 41,5019 93,1648

6 + 3 95,4444 12,4556 69,613 121,276

6 - 3 84,0 12,4556 58,1686 109,831

--------------------------------------------------------------------------------



The StatAdvisor

---------------

This table shows the mean kwiatostany_2008 for each level of the

factors. It also shows the standard error of each mean, which is a

measure of its sampling variability. The rightmost two columns show

95,0% confidence intervals for each of the means. You can display

these means and intervals by selecting Means Plot from the list of

Graphical Options.




Multiple Comparisons for kwiatostany_2008 by podkladka


--------------------------------------------------------------------------------

Method: 95,0 percent Student-Newman-Keuls

podkladka Count LS Mean Homogeneous Groups

--------------------------------------------------------------------------------

4 6 55,4722 X

5 6 60,2778 X

2 6 60,5556 X

1 6 65,8333 X

3 6 89,2222 X

6 6 89,7222 X

--------------------------------------------------------------------------------

Contrast Difference

--------------------------------------------------------------------------------

1 - 2 5,27778

1 - 3 -23,3889

1 - 4 10,3611

1 - 5 5,55556

1 - 6 -23,8889

2 - 3 -28,6667

2 - 4 5,08333

2 - 5 0,277778

2 - 6 -29,1667

3 - 4 33,75

3 - 5 28,9444

3 - 6 -0,5

4 - 5 -4,80556

4 - 6 -34,25

5 - 6 -29,4444

--------------------------------------------------------------------------------

* denotes a statistically significant difference.




The StatAdvisor

---------------

This table applies a multiple comparison procedure to determine

which means are significantly different from which others. The bottom

half of the output shows the estimated difference between each pair of

means. There are no statistically significant differences between any

pair of means at the 95,0% confidence level. At the top of the page,

one homogenous group is identified by a column of X's. Within each

column, the levels containing X's form a group of means within which

there are no statistically significant differences. The method

currently being used to discriminate among the means is the

Student-Newman-Keuls multiple comparison procedure. With this method,

there is a 5,0% risk of calling one or more pairs significantly

different when their actual difference equals 0.







Wyszukiwarka