59. Liu Z, Gilbert W (1994) The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: Implication of in vivo functions for this novel DNA structure. Celi 77:1083-1092
60. Bashkirov VI, Scherthan H, Solinger JA, Buertsedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRNlp) with prefer-ence for G4 tetraplex substrates. J Celi Biol 136: 761-773
61. Murchie AJ, Lilley DM (1992) Retinoblastoma susceptibility genes contain 5' seąuences with a high propensity to form guanine-tetrad structures. Nuci Acids Res 20:49-53
62. Hammond-Kosack MC, Dobrinski B, Lurz R, Dochert K, Kilpatrick MW (1992) The human insulin gene linked polymorphic region exhib-its an altered DNA structure. Nuci Acids Res 20: 231-236
63. Hań H, Hurley LH (2001) G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol Sci 21:136-141
64. Lim JKC, Rice WG, Schwaebe MK, Siddiqui-Jain A, Trent KB, Whitten JP, Hurley LH, von Hoff D (2005) Clinical development of CX-3543, a novel multi-targeting antitumor agent. J Clin Oncology, ASCO Annu-al Meeting Proceedings 23: 3206
65. Fang G, Cech TR (1993) The (3 subunit of Oxytńcha telomere-binding protein promotes G-quartet formation by telomeric DNA. Celi 4: 875-885
66. Giraldo R, Rhodes D (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J13: 2411-2420
67. Kettani A, Gorin A, Majumdar A, Hermann A, Skripkin E, Zhao H, Jones R, Patel DJ (2000) A dimeric DNA interface stabilized by stacked A -(G G G G) A hexads and coordinated monovalent cations. J Mol Biol 297: 627-644
68. Fedoroff OY, Salazar M, Hań H, Chemeris W, Kerwin SM, Hurley LH (1998) NMR-based model of a telomerase-inhibiting compound bound to G- quadruplex DNA. Biochemistry 37:12367-12374
69. Allemand JF, Bensimon D, Lavery R, Croquette V (1998) Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci USA 95:14152-14157
70. Pauling L, Corey RB (1953) A proposed structure for the nucleic acids. Proc Natl Acad Sci USA 39: 84-97
DNA structure from A to Z — biological implications
of structural diversity of DNA
Małgorzata Bukowiecka-Matusiak\ Lucyna A. Wozniak1'2'M
1 Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences; Department of Bioorganic Chemistry, 112 Sienkiewicza Str.,
90-363 Łódź, Poland
^Medical University, 7/9 Żeligowskiego Str., 90-752 Łódź, Poland
se-mail: lwozniak@bio.cbmm.lodz.pl, lwozniak@achilles.wam.lodz.pl
Key words: DNA, conformation, structure, duplex, triplex, tetraplex
ABSTRACT
Deoxyribonucleic acid (DNA) is a biopolymer of nucleotidet., usually adopting a double-stranded helical form in cells, with complementary base pairing holding the two strands together. The most stable is B-DNA conformation, although numerous other double helical structures can occur under specific conditions (A-DNA, Z-DNA, P-DNA). The existence of mułtiple-stranded (triplex, tetraplex) forms in vivo and their biological function in cells arę subject of intensive studies.
238
www.postepybiochemii.pl