Wzór funkcji y=f(x) |
Pochodna f '(x) |
Uwagi |
f (x) = c |
(c) ` = 0 |
c |
f (x) = ax + b |
(ax + b) ` = a |
|
f (x) = ax2 + bx + c |
(ax2+bx+c)` = 2ax+b |
|
f (x) = xa |
(xa) ` = a ∙ xa-1 |
a |
f (x) = √x |
(√x) ` = 1 / 2√x |
x > 0 |
f (x) = a / x |
(a / x) ` = -a / x2 |
x ≠ 0 |
f (x) = n√x |
(n√x) `= 1 / n ∙ n√xn-1 n należy do N \{0,1} |
x > 0 |
f (x) = sin x |
(sin x) ` = cos x |
|
f (x) = cos x |
(cos x) ` = - sin x |
|
f (x) = tg x |
(tg x) ` = 1 / cos2 x |
x≠π/2+kπ dla k |
f (x) = ctg x |
(ctg x) ` = - 1 / sin2 x |
x ≠ kπ dla k |
f (x) = ax |
(ax) ` = ax ∙ ln a |
a > 0 |
f (x) = ex |
(ex) ` = ex |
|
f (x) = ln x |
(ln x) ` = 1 / x |
x > 0 |
f (x) = ln |x| |
(ln |x|) ` = 1 / x |
x ≠ 0 |
f (x) = logax |
(logax) ` = 1 / x ln a |
a > 0; a ≠ 1; x > 0 |
f (x) = arc sin x |
(arc sin x) `=1/√1-x2 |
|x| < 1 |
f (x) = arc cos x |
(arc cosx)`=-1/√1-x2 |
|x| < 1 |
f (x) = arc tg x |
(arc tg x) `=1 / 1+x2 |
|
f (x) = arc ctg x |
(arc ctg x)`= -1/1+x2 |
|
h(x) = (f∙g)(x) = f(g(x)); h'(x) = f `(g(x))∙g'(x)