Wzór funkcji y=f(x)

Pochodna f '(x)

Uwagi

f (x) = c

(c) ` = 0

c0x01 graphic
R

f (x) = ax + b

(ax + b) ` = a

f (x) = ax2 + bx + c

(ax2+bx+c)` = 2ax+b

f (x) = xa

(xa) ` = axa-1

a0x01 graphic
R \ {0,1}

f (x) = √x

(√x) ` = 1 / 2√x

x > 0

f (x) = a / x

(a / x) ` = -a / x2

x ≠ 0

f (x) = nx

(nx) `= 1 / nnxn-1 n należy do N \{0,1}

x > 0

f (x) = sin x

(sin x) ` = cos x

f (x) = cos x

(cos x) ` = - sin x

f (x) = tg x

(tg x) ` = 1 / cos2 x

xπ/2+ dla k0x01 graphic
C

f (x) = ctg x

(ctg x) ` = - 1 / sin2 x

x dla k0x01 graphic
C

f (x) = ax

(ax) ` = ax ∙ ln a

a > 0

f (x) = ex

(ex) ` = ex

f (x) = ln x

(ln x) ` = 1 / x

x > 0

f (x) = ln |x|

(ln |x|) ` = 1 / x

x ≠ 0

f (x) = logax

(logax) ` = 1 / x ln a

a > 0; a ≠ 1; x > 0

f (x) = arc sin x

(arc sin x) `=1/√1-x2

|x| < 1

f (x) = arc cos x

(arc cosx)`=-1/√1-x2

|x| < 1

f (x) = arc tg x

(arc tg x) `=1 / 1+x2

f (x) = arc ctg x

(arc ctg x)`= -1/1+x2

h(x) = (fg)(x) = f(g(x)); h'(x) = f `(g(x))∙g'(x)