Dane
a = 6 b = 15 c = 6
Warunki początkowe:
tk=0 y=1 y'=0 y”=0 dla h=0,01
Układ otwarty
y(s)=x(s)×G1(s)×G2(s)
Układ zamknięty
y(s)=[x(s)×G1(s)×G2(s)]-[y(t)×G1(s)×G2(s)]
y(s)+y(s)×G1(s)×G2(s)=x(s)×G1(s)×G2(s)
G(s)=
Równanie różniczkowe:
y(s)(s3+16s2+16s+37)=36x(s)
y'”(t)+ 16y”(t)+ 16y'(t)+36y(t)=36x(t)
z' z x
K y' = x
M x' = z
N z' = -16z-16x-37y+36
K1 = hxk
M1 = hzk
N1 = h(-16zk-16xk-37yk+36)
K2 = h(xk+M1/2)
M2 = h(zk+N1/2)
N2 = h[-16(zk+N1/2)-16(xk+M1/2)-37(yk+K1/2)+36]
K3 = h(xk+M2/2)
M3 = h(zk+N2/2)
N3 = h[-16(zk+N2/2)-16(xk+M2/2)-37(yk+K2/2)+36]
K4 = h(xk+M3)
M4 = h(zk+N3)
N4 = h[-16(zk+N3)-16(xk+M3)-37(yk+K3)+36]
yk+1 = yk+1/6(K1+2K2+2K3+K4)
xk+1 = xk+1/6(M1+2M2+2M3+M4)
zk+1 = zk+1/6(N1+2N2+2N3+N4)
Wykresy:
yk = f(tk) xk = f(tk) xk = f(yk) zk = f(yk)