Pomiary i niepewności pomiarowe, 6


5. Test 0x01 graphic

Wiemy, że suma kwadratów zmiennej u, zdefiniowanej wzorem (1.4.1) podlega rozkładowi 0x01 graphic
. We wzorze tym przez  fi oznaczyliśmy wartości rzeczywiste badanej wielkości zakładając milcząco, że wartości te są znane. W rzeczywistości jest na ogół inaczej. Wykonujemy pomiary danej wielkości fizycznej wtedy, kiedy wartości prawdziwe nie są nam znane. Często natomiast wartości te przewidywane są przez daną teorię lub model fizyczny. W takim przypadku zadaniem pomiaru jest sprawdzenie, czy wyniki pomiarów potwierdzają przewidywania opisu teoretycznego. Bywa również, że istnieje kilka hipotez i należy zweryfikować ich słuszność lub wybrać hipotezę najbardziej prawdopodobną. Potrzebne jest wiec obiektywne kryteriom takiego wyboru. Istnieje wiele typów testów statystycznych opartych na różnych założeniach. Omówimy tu test 0x01 graphic
jako jeden z najczęściej stosowanych w analizie danych. Przedstawimy więc krótko ideę takiego testu.

Wykonujemy N pomiarów. Przez gi oznaczamy uzyskane wartości liczbowe:

0x01 graphic

(1.5.1)

Nieznane wartości prawdziwe oznaczmy przez  hi. Mamy więc

0x01 graphic

(1.5.2)

gdzie 0x01 graphic
charakteryzują odstępstwa wartości mierzonych od rzeczywistych. Zakładamy,  że odstępstwa te podlegają rozkładowi normalnemu o wartości przeciętnej równej zero i odchyleniach standardowych wynoszących dla poszczególnych pomiarów 0x01 graphic
.

Stawiamy hipotezę:

0x01 graphic

(1.5.3)

gdzie fi  nie są już wartościami rzeczywistymi, ale znanymi wartościami przewidywanymi przez daną hipotezę, np. testowany model teoretyczny. Jeśli jednak hipoteza jest słuszna, to spełnione są zależności podane przy określaniu rozkładu 0x01 graphic
, tj. wielkość

0x01 graphic

(1.5.4)

podlega rozkładowi normalnemu o wartości przeciętnej równej zeru i odchyleniu standardowym równym jedności. (Jest to omawiany już znormalizowany rozkład Gaussa.)  Z kolei, wielkość określona wzorem

0x01 graphic

(1.5.5)

podlega rozkładowi 0x01 graphic
o liczbie stopni swobody równej N

Wykonując serię pomiarów i obliczając wartość wyrażenia (1.5.5) uzyskujemy jedną liczbę X2. Z postaci wyrażenia (6.5.3) widać, że jeśli różnice pomiędzy wartościami zmierzonymi i rzeczywistymi (licznik) są zbliżone do wartości niepewności pomiarowych (mianownik), to suma wszystkich składników powinna być w przybliżeniu równa  liczbie punktów pomiarowych. Im większa wartość X2, tym gorsza zgodność przewidywania teoretycznego ze zmierzonymi wartościami eksperymentalnymi. 

Czy słuszne jest stwierdzenie, ze im mniejsza wartość X2, tym lepiej - bo wartości zmierzone są bardzo bliskie przewidywaniom teorii? Wniosek taki nie jest jednak słuszny! Kiedy średni wkład pojedynczego składnika w wyrażeniu (1.5.5) jest znacznie mniejszy od jedności, to nie jest to powód do zadowolenia, ale raczej do powtórnego przeanalizowania poprawności oszacowania błędów pomiarowych, bowiem wartości ich są znacznie zawyżone. Zbyt małe wartości X2 pojawiają się także, kiedy wartości teoretyczne odzwierciedlają raczej fluktuacje statystyczne niż prawidłowość fizyczną. 

Czym jest bowiem liczba stopni swobody? Omawiając własności wartości średniej zauważyliśmy, że estymator wariancji średniej jest nieobciążony dopiero wtedy, gdy odejmujemy jedynkę od liczby sumowanych składników  w wyrażeniu  (6.1.8) uwzględniając tym fakt, że wartość średnia wyznaczona jest w oparciu o skończoną liczbę pomiarów. Tak samo jest jeśli wyrażenie opisujące funkcję teoretyczną zawiera parametry wyznaczone z użyciem wartości pomiarowych. Wówczas liczba stopni swobody równa jest liczbie punktów pomiarowych pomniejszoną o liczbę parametrów funkcji teoretycznej. Oznaczając liczbę stopni swobody przez NDF mamy zależność

0x01 graphic

(1.5.6)

gdzie k jest liczbą parametrów wyznaczonych z użyciem wartości pomiarowych.

Jak więc ilościowo ocenić zgodność postawionej hipotezy z wynikami pomiarów? 

0x01 graphic

 Rys.1.5.1. Rozkład 0x01 graphic
i poziom ufności 0x01 graphic
. Zobacz rozkłady poziomów ufności w interaktywnej ilustracji (Rys. 6.2.1)

Przyjmujemy następujące kryterium: Jeśli prawdopodobieństwo otrzymania wartości0x01 graphic
większej od wartości 0x01 graphic
jest mniejsze niż 0x01 graphic
, to hipotezę należy odrzucić. 

Ilustruje to rysunek 1.5.1. gdzie kolorem czerwonym pokazany jest obszar, dla którego wartości 0x01 graphic
są większe od 0x01 graphic
. Pole tego obszaru równe jest 0x01 graphic
, i wiąże się z wartością dystrybuanty związkiem

0x01 graphic

(1.5.7)

Wielkość 0x01 graphic
to poziom ufności, który określa prawdopodobieństwo z jakim odrzuca się hipotezy prawdziwe stosując test 0x01 graphic
.

Dla wykonania testu 0x01 graphic
należy więc:  wyznaczyć wartość X2 dla danego pomiaru (serii pomiarowej), określić liczbę stopni swobody, przyjąć określoną wartość poziomu ufności, porównać uzyskaną wartość z wartością 0x01 graphic
odpowiadającą danemu poziomowi ufności przy danej liczbie stopni swobody i jeśli 0x01 graphic
  - hipotezę odrzucić, w przeciwnym przypadku - przyjąć.

Jak określać wartość poziomu ufności? Decyzja należy tu do wykonującego test. Jeśli obawiamy się przyjęcia hipotezy fałszywej, przyjmujemy stosunkowo dużą wartość poziomu ufności np. 10% tj. 0.1. Wtedy jednak w 10% przypadków możemy odrzucić hipotezę prawdziwą. Jeśli tego nie chcemy, przyjmujemy mały poziom ufności np. 1%, ale wtedy wzrasta prawdopodobieństwo, że za prawdziwą uznamy hipotezę, która jest fałszywa. W praktyce, w publikacjach naukowych jako rezultat testu 0x01 graphic
podaje się często wartości X2 oraz liczbę stopni swobody pozostawiając czytelnikowi osąd, czy dana hipoteza może być uznana za prawdziwą.

 

Test 0x01 graphic
w praktyce

Dla przedstawienia poszczególnych elementów testu 0x01 graphic
rozważmy przykład pomiaru pewnej wielkości y dla N wartości x. Przyjmijmy, że zależność teoretyczna y=f(x) jest liniowa tj.

0x01 graphic

(1.5.8)

gdzie A i B są parametrami prostej. Zapiszmy poszczególne elementy wykonania testu 0x01 graphic

1. Wykonujemy N pomiarów wielkości y  dla wybranych wartości zmiennej x, otrzymując wartości 0x01 graphic
i niepewności pomiarowe 0x01 graphic
. Przykład z laboratorium fizycznego: x - indukcja pola magnetycznego, y - napięcie Halla, którego zależność od indukcji pola magnetycznego jest badana w ćwiczeniu.

2. Wyznaczamy wartości teoretyczne 0x01 graphic
. Wartości te mogą wynikać w pełni z przewidywań teoretycznych lub wyznaczane są na podstawie porównania z wynikami pomiarów. 

3. Wyznaczamy wartość wyrażenia

0x01 graphic

(1.5.9)

4. Określamy liczbę stopni swobody. Liczba ta wynosi NFD=N-k, gdzie k=0, jeśli parametry A i B wynikały z przewidywań teoretycznych niezależnie od wykonanych przez nas pomiarów; k=2, jeśli parametry te zostały określone tak, by prosta najlepiej opisywała dane pomiarowe.

5. Przyjmujemy określoną wartość poziomu ufności 0x01 graphic
i wyznaczamy odpowiadającą tej wartości - wartość 0x01 graphic
.

6. Porównujemy wartości X2 i 0x01 graphic
, po czym uznajemy hipotezę za słuszną jeżeli 0x01 graphic
.

Załączona poniżej interaktywna ilustracja graficzna zawiera konkretny przykład testu  dla zadanej zależności liniowej

MS-Excel  

Interaktywna ilustracja graficzna  

MS-Excel  

Kliknij w polu rysunku, by otworzyć aplikację. Wciśnij przy tym "Shift", by ściągnąć ją na swój komputer.

Rys.1.5.2. Przykład testu 0x01 graphic
.

 

Test 0x01 graphic
dla rozkładów statystycznych

Badamy rozkład statystyczny danej wielkości fizycznej. Jako przykład weźmy rozkład liczby zliczeń rejestrowanych przez detektor promieniowania jonizującego w jednostce czasu przy badaniu statystycznych cech rozpadów jądrowych. Rozkład taki unormowany jest do liczby n stanowiącej sumaryczną liczbę wszystkich pomiarów tj.  0x01 graphic
gdzie i numeruje wszystkie możliwe do uzyskania wartości pomiarowe (liczby zliczeń w jednostce czasu), a ni określa ile razy dana wartość (określona liczba zliczeń w jednostce czasu) wystąpiła w pomiarach. Jeśli uzyskiwane wartości mają rozkład ciągły (np. rozkład energii fotonów rejestrowanych w detektorze), to możemy je pogrupować w zadanych przedziałach badanej wielkości fizycznej i wówczas ni  jest liczbą wyników pomiarów, których wartości znalazły się w danym przedziale (np. w przedziale energii fotonów). Rozkład taki nosi nazwę histogramu.

Rozkład teoretyczny jest przewidywanym przez daną hipotezę teoretyczną rozkładem prawdopodobieństw pi odpowiadających wyznaczonym doświadczalnie liczbom ni. Rozkład taki jest unormowany do jedności, tj. suma prawdopodobieństw wszystkich możliwych do uzyskania wartości (lub w przypadku rozkładów ciągłych, całka z gęstości prawdopodobieństwa po całym przedziale mierzonych wartości) równa jest jedności. (W przypadku badania statystycznych cech rozpadów jądrowych jest to rozkład Poissona lub Gaussa.)

Dla porównania rozkładu teoretycznego z doświadczalnym mnożymy wartości pi przez sumaryczną liczbę pomiarów n by zapewnić wspólne unormowanie obu rozkładów. Wartości 0x01 graphic
odpowiadają wyznaczonym doświadczalnie wartościom ni .  Liczby , będące wynikami pomiarów, są oczywiście zmiennymi losowymi, oczekujemy natomiast, że przy słuszności hipotezy teoretycznej, ich wartości oczekiwane równe są 0x01 graphic
.  

Jaka jest niepewność wartości ntj. liczby zliczeń dla wartości zmiennej dyskretnej równej i lub w przypadku zmiennej ciągłej, w i-tym przedziale? Gdyby liczba przedziałów wynosiła dwa i wynik każdego z pomiarów trafiałby do jednego z nich, to liczba zliczeń w danym przedziale podlegałaby rozkładowi dwumianowemu, gdyby liczba przedziałów była większa ale skończona - rozkładowi wielomianowemu, gdyby zdążała do nieskończoności - rozkładowi Poissona, jeśli zaś wartości  n byłyby wystarczająco duże - rozkładowi Gaussa. Zakładając słuszność testowanej hipotezy i "poissonowski" charakter rozkładu n możemy przyjąć, że niepewności pomiarowe npodlegają rozkładowi Poissona o wartości oczekiwanej równej 0x01 graphic
, a więc wariancji 0x01 graphic
, co wynika z własności rozkładu Poissona, wzór (5.2.7). Jest to niepewność statystyczna liczby zliczeń w danym przedziale.

W ten sposób mamy zdefiniowane wszystkie wartości niezbędne do wykonania testu0x01 graphic
: wartości pomiarowe 0x01 graphic
, to wyznaczone doświadczalnie liczby  ni, wartości teoretyczne 0x01 graphic
, to odpowiadające im wartości 0x01 graphic
, niepewności pomiarowe wynoszą 0x01 graphic
. Statystyka X2 określona jest więc wzorem

0x01 graphic

(1.5.10)

gdzie N jest liczbą przedziałów dla których wyznaczone zostały liczby zliczeń ni i określone prawdopodobieństwa pi.

Liczba stopni swobody w takim przypadku musi być pomniejszona o jeden, bowiem narzucony został warunek unormowania obu rozkładów poprzez pomnożenie prawdopodobieństw pi przez n. Jeśli więc rozkład teoretyczny określony jest przez k parametrów wyznaczonych przez dopasowanie do rozkładu doświadczalnego to liczna stopni swobody jest równa

0x01 graphic

(1.5.11)

 Jeśli z kolei liczby zliczeń w poszczególnych przedziałach są małe, to dla tych przedziałów nie jest spełnione podstawowe założenie testu0x01 graphic
, że niepewności pomiarowe można opisać rozkładem Gaussa. Grupując wyniki pomiarów w przedziały należy więc tak dobrać ich szerokość, by częstości w każdym przedziale były wystarczająco duże. Zwykle jako minimalną liczbę punktów pomiarowych w danym przedziale przyjmuje się liczbę 5. Dla spełnienia tego warunku można wybrać przedziały o różnych szerokościach, w szczególności tam, gdzie liczby zliczeń są zwykle niewielkie, tj, na krańcach rozkładów.

Z drugiej strony, nie jest wskazane wybieranie zbyt szerokich przedziałów, bo wówczas istnieje groźba zgubienia w nich struktury badanego rozkładu. Dobór szerokości przedziału wymaga więc wzięcia pod uwagę zarówno własności statystycznych jak i fizycznych testowanych rozkładów.

Przykład testu 0x01 graphic
dla rozkładu statystycznego zawiera poniższa interaktywna ilustracja graficzna. 

MS-Excel

Interaktywna ilustracja graficzna  

MS-Excel

Kliknij w polu rysunku, by otworzyć aplikację. Wciśnij przy tym "Shift", by ściągnąć ją na swój komputer.

Rys.1.5.2. Przykład testu 0x01 graphic
dla rozkładu Gaussa.

 



Wyszukiwarka