konspekt czworokąty


Bielsko-Biała,26.11.2014r.

K O N S P E K T L E K C J I

do przedmiotu MATEMATYKA

Temat: Klasyfikacja czworokątów.

Liczba godzin na realizację tematu: 1

Klasa: 1d

Podręcznik oraz literatura uzupełniająca: Matematyka z Plusem

1. Wymagane wiadomości i umiejętności przed lekcją (np. wcześniej powtórzone i zlecone jako zadanie domowe lub konieczne do powtórzenia na początku lekcji):

a) Uczeń zna podstawowe wiadomości o czworokątach

2. Cele zajęć:

Cele dydaktyczne:

Cele wychowawcze:

3. Metody nauczania: dyskusja, pogadanka, praca z podręcznikiem i kartą pracy

4. Formy nauczania: praca indywidualna, całą klasą

  1. Pomoce dydaktyczne i środki techniczne:

7. Szczegółowy przebieg lekcji:

Tematy / podtematy

Czynności nauczyciela

Czynności uczniów

czas

Uwagi

przywitanie

Nauczyciel wita się z uczniami

Uczniowie witają się z nauczycielem

cz. wstępna -sprawy organizacyjne

Sprawdzenie porządku w klasie

Nauczyciel sprawdza porządek w klasie i, jeśli zauważa nieprawidłowości, prosi uczniów o wykonanie odpowiednich czynności

Uczniowie wykonują polecenia

Należy sprawdzić: czystość, czy tablica jest starta, itd.

Sprawdzenie obecności

Nauczyciel sprawdza obecność

Uczniowie odpowiadają

Problemy z zadaniem domowym

Nauczyciel pyta, czy uczniowie mieli problemy z zadaniem domowym

Uczniowie przedstawiają swoje problemy

Przedstawienie rozwiązania zadania domowego

Nauczyciel wyznacza uczniów do prezentacji zadania domowego

Wybrani uczniowie demonstrują swoje zadania domowe

W przypadkach niepełnych odpowiedzi należy pozostałych uczniów włączyć do uzupełnienia rozwiązania zadania

Część zasadnicza lekcji

Przedstawienie tematu lekcji

Nauczyciel dyktuje temat „Klasyfikacja czworokątów” i prosi o zapisanie go w zeszycie.

Uczniowie zapisują temat lekcji.

  • Cele lekcji

Na dzisiejszej lekcji sklasyfikujemy czworokąty.

Słuchają

  • Wstęp

Nauczyciel przyczepia magnesami do jednej z tablic kartki załącznik 3 i rozdaje uczniom w mniejszym formacie wycięte kartki załącznik 3. Na drugiej tablicy nauczyciel przyczepia kartkę z napisem czworokąty. Zadaje pytania:

Nauczyciel pisze na tablicy czworokąty i zadaje pytania:

  • Czy wszystkie figury z załącznika 3 są czworokątami?

  • Które są czworokątami?

  • Jakie opisy można dołożyć do każdego z czworokątów?

  • Które rysunki przedstawiają dane czworokąty?

  • Ile wynosi suma kątów w czworokącie?

  • Ile wynosi suma miar kątów leżących przy tym samym ramieniu trapezu?

  • Jakie własności mają dane czworokąty?

  • Które odcinki to podstawy w trapezie, a które ramiona?

  • Jakie znacie rodzaje trapezów?

  • Jaką opisy dobraliście do tych trapezów?

Odpowiadają na pytania.

-Nie

-Kwadrat, prostokąt, romb, równoległobok, trapez, deltoid

-trapez-co najmniej jedna para boków równoległych, prostokąt-wszystkie kąty proste, kwadrat-wszystkie boki jednakowej długości, romb-wszystkie boki jednakowej długości i 2 pary boków równoległych, równoległobok-2 pary boków równoległych, deltoid-każdy z boków jest równy jednemu z boków sąsiednich.

-Wybierają odpowiednie rysunki

-Suma kątów wynosi 360°

-Suma kątów leżących przy tym samym ramieniu trapezu jest równa 180°

-równoległobok przekątne przecinają się w połowie, romb-przekątne rombu przecinają się w połowie i są prostopadłe, prostokąt przekątne prostokątna mają jednakową długość i przecinają się w połowie, kwadrat przekątne mają jednakową długość i przecinają się w połowie i są prostopadłe, deltoidzie przekątne są prostopadłe

-równoległe boki trapezu to podstawy, a pozostałe boki to ramiona.

-równoramienny, prostokątnym

-trapezem równoramiennym nazywamy trapez, w którym ramiona mają jednakowe długości, trapezem prostokątnym nazywamy trapez, który ma co najmniej jeden kąt prosty.

Praca z podręcznikiem

Nauczyciel prosi o otwarcie podręcznika i rozwiązywanie str. 115 zad 1

Rozwiązują.

1. czy kąty czworokąta mogą mieć podane niżej miary?

a)123°,37°,138°,

42°

Nie, ponieważ suma miary kątów czworokąta ma mieć 360° a ma 340°

b) 72°,73°,74°,175°

Nie, suma wynosi 394°

c)89°, 91°, 91°, 89°

Tak, bo suma wynosi 360°

  • Wystawienie ocen

Nauczyciel może wystawić plusy z aktywności.

Uczniowie muszą uzasadnić

  • Podsumowanie (rekapitulacja)

Nauczyciel na podsumowanie lekcji rozdaje Kartę pracy zał. 1 i 2 (prawda i fałsz, krzyżówka) i prosi o wklejenie do zeszytu.

Uczniowie wklejają i rozwiązują

Podsumowanie pozwoli na utrwalenie wiedzy uczniów

Część końcowa lekcji

  • Ewaluacja umiejętności uczniów

Nauczyciel powinien zadać pytania typu:

Czy wszystko zrozumiałeś?

Które zagadnienia sprawiły ci najwięcej problemów?

Które zagadnienia chciałbyś dokładniej poznać?

Uczniowie odpowiadają na pytania ewaluacyjne

Nauczyciel pozna opinię uczniów na temat zajęć

  • Podanie zadania domowego

Nauczyciel zadaje zadanie skończyć krzyżówkę

Zapisują treść zadania domowego do zeszytów.

Nauczyciel może zadać zadanie domowe na dwóch poziomach trudności (łatwiejsze dla uczniów mających trudności z uczeniem się matematyki oraz trudniejsze, dla pozostałych)

  • pożegnanie

Nauczyciel żegna się z uczniami

Uczniowie żegnają się z nauczycielem

RAZEM [ minut]

45

Załącznik 1

  1. Które z poniższych zdań są prawdziwe-uzasadnij?

  1. Czworokąt, którego przekątne są prostopadłe, jest rombem?

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
Fałsz np.

  1. Suma miar kątów leżących przy tym samym boku równoległoboku jest równa 180°

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
Prawda np.

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
bo kąty odpowiadające mają tą samą miarę.

  1. Czworokąt, w którym suma miar wszystkich kątów jest równa 360°, jest trapezem

Fałsz ponieważ każdy czworokąt ma sumę równą 360°

  1. Kwadrat jest prostokątem

Prawda bo ma wszystkie kąty proste

  1. Każdy trapez jest prostokątem

  2. Każdy prostokąt jest trapezem prostokątnym równoramiennym?

Prawda np. Trapez prostokątny ma co najmniej jeden kąt prosty, a równoramienny ma ramiona o jednakowej długości.

0x08 graphic

Załącznik 2

0x01 graphic

1. Tylko czworokąt ma je cztery.

2. Maja jedną parę boków równoległych.

3. Popularny czworokąt wklęsły.

4. Potocznie mówimy o nim „kopnięty” kwadrat.

5. Czworokąt, który nie posiada boków równoległych ani równych.

6. Czworokąt, który ma boki parami równe, ale nie ma boków równoległych.

7. Najbardziej „równy” wśród czworokątów.

8. Wszystkie czworokąty mają je dwie.

9. Jest nim kwadrat, ale on nie jest kwadratem.

10. Każde dwa punkty tego czworokąta są końcami odcinka zawierającego się w nim.

Odpowiedzi:

  1. Wierzchołki

  2. Trapezy

  3. Latawiec

  4. Romb

  5. Trapezoid

  6. Deltoid

  7. Kwadrat

  8. Przekątne

  9. Prostokąt

  10. Wypukłe

Hasło: czworokąty

4



Wyszukiwarka