Sciaga do kola do kretowsk, NAUKA, Politechnika Bialostocka - budownictwo, Semestr III od Karola, Wytrzymałośc Materiałów


I. Zwykła statyczna próba rozciągania metali

Wyraźna granica plastyczności RE jest to naprężenie, po osiągnięciu którego następuje wzrost wydłużenia rozciąganej próbki bez wzrostu lub nawet przy spadku obciążenia. Re = Fe/So

Naprężenie rozrywające Ru jest to naprężenie rzeczywiste występujące w przekroju poprzecznym próbki, w miejscu przewężenia bezpośrednio przed zerwaniem. Ru = Fu/Su

Wytrzymałość na rozciąganie Rm jest to naprężenie odpowiadające największej sile obciążającej Fm, uzyskanej w czasie przeprowadzania próby rozciągania, odniesionej do pola pierwotnego przekroju poprzecznego próbki S0 : Rm = Fmax/So

Wydłużenie względne Ak jest to przyrost długości pomiarowej próbki po jej rozerwaniu lu odniesiony do pierwotnej jej długości l0 wyrażony w procentach Ak = lu - lo*100% / lo

Wydłużenie względne równomierne Ar jest to wydłużenie niezależne od długości pomiarowej i mierzone z wyłączeniem wpływu wydłużenia w pobliżu miejsca rozerwania próbki, wyrażone w procentach w stosunku do pierwotnej długości. Ar = (do2 -dr2 )* 100% / do2

Przewężenie względne Z jest to zmniejszenie powierzchni przekroju poprzecznego próbki w miejscu jej rozerwania, odniesione do pola S0 jej pierwotnego przekroju, wyrażone w procentach. Z = (So - Su) *100% / So

Na początku próby wydłużenie rośnie wprost proporcjonalnie do siły obciążającej. Wykres na tym etapie powinien być linią prostą. Wykres rozciągania stali, nie jest linią prostą w trakcie badań na ćwiczeniach jest to spowodowane poślizgiem próbki w uchwytach maszyny wytrzymałościowej. Na wykresie można zauważyć wyraźną granicę plastyczności.

II. ZWYKŁA STATYCZNA PRÓBA ŚCISKANIA MATERIAŁÓW.

Próba ściskania jest odwrotnością próby rozciągania. Przez analogię wszystkie wielkości mechaniczne wyznacza się podobnie jak przy próbie rozciągania. Próba statyczna ściskania dla różnych materiałów przebiega nieco odmiennie pod względem odkształceń i zniszczeń.

Próbki metali plastycznych nie są niszczone podczas ściskania, jedynie pęcznieją przyjmując kształt beczułkowaty, jest to efekt tarcia między płaszczyznami szczęk a próbki. W przypadku materiałów kruchych owe zjawisko tarcia powoduje pęknięcie próbki pod kątem około 45° do płaszczyzny po przekątnej próbki. Dla materiałów drewnianych obserwuje się zjawisko pełzania materiału, następuje rozwarstwienie i przesunięcie warstw w próbce.

Próba statyczna ściskania metali: Naprężenia ściskanie *c = Fc/So [Mpa] Skrócenie względne Ack = (lo - lk)*100% lo Rozszerzenie względne Zc = (Sk - So)*100%/ So

Próba statyczna ściskania żeliwa. Wytrzymałość tę wyznacza się na próbkach o kształcie walca. Stosuje się próbki o h/d0 = 1,5. Wytrzymałość żeliwa na ściskanie Rc = Fc/So

Próba statyczna ściskania drewna Wytrzymałość wyznacza się wzdłuż lub w poprzek włókien. Rc(p,r) = Fc(p,r)/So

Z przeprowadzonej próby ściskania 3 różnych materiałów stali, żeliwa i drewna wynika że:* te 3 materiały mają odmienne wytrzymałości na ściskanie i charakter zniszczeń.* stal należy do materiałów plastycznych, nie ulega zniszczeniu, jedynie odkształceniu. Wytrzymałość na ściskanie dla tych materiałów nie określa się. * żeliwo należy do materiałów kruchych (nie posiadają wyraźnej granicy plastyczności). Zniszczenie próbki żeliwa następuje u jego podstawy, następnie próbka doznaje pęknięcie poślizgowego (ścięcia).* z doświadczenia wynika iż drewno wykazuje większa wytrzymałość na ściskanie w kierunku równoległym do włókien. Wytrzymałość na ściskanie w kierunku prostopadłym do włókien jest znacznie mniejsza. Im większa wilgotność drewna tym mniejsze wytrzymałość próbki badanej.

III. ŚCISŁA STATYCZNA PRÓBA ROZCIĄGANIA METALI.

Umowną granicą sprężystości nazywamy takie naprężenie, które wywołuje w próbce odkształcenie trwałe o wartości 0,05% długości pomiarowej.

Umowną granicą plastyczności nazywamy takie naprężenie, które wywołuje w próbce odkształcenie trwałe o wartości 0,2% długości pomiarowej.

Moduł Younga E - jest odwrotnością współczynnika proporcjonalności k, występującego w prawie Hooke`a: (0x01 graphic
)

Umowne granice naprężenia R0,05 ii R0,2 możemy wyznaczyć dwiema metodami: odciążenia lub obciążenia.

Metoda odciążenia polega na stopniowym obciążaniu i odciążaniu próbki oraz pomiarze trwałych wydłużeń po każdym odciążeniu. Na początku obciążamy próbkę siłą wstępna Fw stanowiącą około 10% siły Fx, następnie na próbkę nakładamy tensometr i obciążamy ją siłą 2Fw po 10 sekundach działania tej siły próbkę odciążamy do siły Fw, a wskazówkę tensometru ustawiamy na 0. Obciążamy próbkę kolejno coraz większymi siłami i każdorazowo po 10, sekundach działania pewnej siły odciążamy ją do siły Fw, notując równocześnie siłę obciążającą i odkształcenie trwałe. W pobliżu spodziewanej siły Fx zagęszczamy pomiary i przerywamy je, gdy wydłużenie trwałe przekroczy x% długości pomiarowej. Umowne granice przy umownym wydłużeniu trwałym x obliczamy ze wzoru:

0x01 graphic
Px - liczba działek odpowiadająca wydłużeniu trwałemu x% długości pomiarowej, P1, P2 - wskazania tensometru, F1, F2 - siły odpowiadające wskazaniom tensometru P1 i P2.

Metoda obciążenia jest metodą wykreślną. Należy obciążyć próbkę siła wstępną Fw, wynoszącą około 10% spodziewanej siły Fx, założyć tensometr i zwiększać obciążenie co 20% Fx odczytać wskazania tensometru. W nieliniowej części wykresu pomiary należy zagęścić tak, aby przyrosty siły nie wywołały naprężeń większych niż 20 MN/m2. Na podstawie odczytów wskazań siłomierza i tensometru sporządzamy wykres rozciągania w układzie F, Δl lub σ,ε. Skalę wykresu należy dobrać tak, aby kąt nachylenia części liniowej wykresu do osi odciętych mieścił się w granicach 50 ÷ 70°, a naprężeniu 10 MN/m2 powinno odpowiadać co najmniej 2 mm na osi rzędnych. Na osi odciętych wykresu odmierzamy wartość Δl = x% l0 lub ε = x%. Przez wyznaczony punkt M prowadzimy prostą ML równolegle do prostej odcinka OT. Rzut punktu L przecięcia prostej z krzywą, na oś rzędnych daje siłę Fx lub naprężenie graniczne Rx. 0x01 graphic

IV. PRÓBA UDARNOŚCI NA MŁOCIE CHARPY'EGO. Celem ćwiczenia jest pomiar zużytej pracy na złamanie próbki z karbem o znormalizowanym kształcie i wymiarach.

Próbę udarności stosuje się do kontroli obróbki cieplnej i stwierdzenia skłonności tworzywa do starzenia, kruchości na zimno, na gorąco, itp. Stosowane są próby udarowe do wyznaczania właściwości dynamicznych tworzyw takie jak: rozciągania, ściskania, skręcania i zginania.

Norma przewiduje próbki typu Mesnagera o przekroju prostokątnym o wymiarach 55×10×10 mm z karbem o głębokości 2mm.

Udarnością próbki U nazywamy stosunek pracy zużytej na jej złamanie do pola S powierzchni przekroju poprzecznego w miejscu karbu. U = Lu/S

Można stosować próbki z karbem w kształcie litery U lub V.

Próbę udarności przeprowadza się tak, aby uderzenie młota było środkowe oraz oś karbu leżała w płaszczyźnie ruchu młota i karb był skierowany do podpór.

Do przeprowadzania prób używa się młotów wahadłowych o energii od 100 do 300 Nm, przy czym prędkość w chwili uderzenia powinna wynosić 4÷7 m/s, a dopuszczalne straty wywołane tarciem do 12%.

Energia zużyta na zniszczenie próbki wynosi:

Lu = G *h - G* h*

h = l (1 - cosα)

h* = l (1 - cosβ)

α = 160 ° normowo w młocie Charpy`ego masa młota wynosi 18,79 kg, max energia wynosi 300 J.

Udarność zależy od kształtu elementu oraz od temperatury. Udarność jest tym większa im większa jest temperatura oraz im mniejsza jest zawartość węgla w stali.

V. PRÓBA SKRĘCANIA

Skręcaniem swobodnym nazywamy skręcanie, przy którym na odkształcenia pręta nie są nałożone żadne ograniczenia.

Czyste skręcanie - występuje w przypadku działania na pręt dwóch par sił leżących w dwóch różnych płaszczyznach prostopadłych do osi pręta.

Przy teoretycznym rozpatrywaniu w zakresie liniowej teorii zagadnienia skręcania prętów o przekroju kołowym przyjmujemy potwierdzone doświadczalnie następujące założenia:* przekroje płaskie przed skręcaniem pozostają również płaskie po skręceniu,* promienie poprowadzone w nich pozostają proste po skręceniu,* długość pręta po skręceniu nie ulega zmianie.

Przyjmujemy również, że tworzywo pręta jest jednorodne i podlega prawu Hooke'a  = G x γ gdzie γ - kąt odkształcenia postaciowego.

Kąt skręcenia przekrojów pręta oddalonych od siebie o l wyraża się wzorem φ = Ms*l/(G*lo) .Ms - moment skręcający, G - moduł sprężystości postaciowej materiału pręta (moduł Kirchhoffa) I0 - biegunowy moment bezwładności powierzchni przekroju poprzecznego pręta.

W przypadku gdy znamy z pomiarów kąt skręcania  , długość l, moment skręcania Ms i biegunowy moment bezwładności przekroju kołowego obliczamy wartość modułu sprężystości postaciowej:  = G x γ

 = 0x01 graphic
I0=0x01 graphic
G = 0x01 graphic

d - średnica pręta

tgγ  γ  AI x AII/l

tg    AI x AII/r

γ x l =  x r ⇒ γ   x r/l

G =  x r/l = Ms x r/Io - wyznaczenie modułu Kirchoffa.

VI. WYBOCZENIE SPRĘŻYSTE.

Przy wyprowadzeniu wzoru Eulera na siłę krytyczną zakłada się, że pręt jest prostoliniowy, a siły ściskające przyłożone do jego końców działają wzdłuż osi. Do wywołania wyboczenia pręta, przy założeniu idealnej jego osiowości, konieczna jest nie tylko dostatecznie duża siła, ale i nagły impuls siły poprzecznej dla wywołania wstępnej, nieskończenie małej krzywizny. W przeciwnym przypadku siła mogłaby wzrastać nie wywołując wyboczenia sprężystego aż do chwili, gdy w którymś z przekrojów poprzecznych pręta powstałby przegub plastyczny, przekształcający pręt w układ kinematyczny. W układach rzeczywistych zawsze istnieje pewna nie prostoliniowość pręta lub nie osiowość przyłożenia siły i dlatego do wywołania wyboczenia sprężystego nie są konieczne poprzeczne impulsy.

Pręt wyboczy się z płaszczyzny max smukłości. Może podlegać wyboczeniu sprężystemu i niesprężystemu w zależności od wartości smukłości. S = lw/lmin

gdzie:lw = μ l - zredukowana długość wyboczenia, μ - współczynnik redukcji długości wyboczeniowej l, zależne od warunków brzegowych pręta.

Promień bezwładności0x01 graphic
Jmin - minimalny osiowy moment bezwładności przekroju, S - pole pow. przekroju poprzecznego.

Przypadki wyboczenia sprężystego i niesprężystego rozpatruje się oddzielnie. Wzór na siłę krytyczną wyboczenia sprężystego prętów prostych o stałym przekroju podał Euler.0x01 graphic
,M(x)= P y

Podstawiając otrzymujemy :0x01 graphic

0x01 graphic
,0x01 graphic
Stąd przy danych warunkach brzegowych mamy0x01 graphic

Zjawisko wyboczenia jest zjawiskiem niebezpiecznym i może występować w następujących elementach: w słupach, kominach i ścianach.

VII. TENSOMETRIA ELEKTROOPOROWA.

Tensometry elektrooporowe. Pomiędzy dwie cienkie bibuły wklejony jest cienki drut oporowy o średnicy 0,04 mm ukształtowany zgodnie z

Czujnik ten o bazie lo = 2-150 mm jest przyklejony do elementu badanego specjalnym klejem tak, aby odkształcał się identycznie jak warstwa wierzchnia badanego materiału.
Zasada działania tensometru: Opór tensometru z przewodnikiem metalicznym jest równy: 0x01 graphic
, p - oporność właściwa l - czynna długość drutu w pętlicach S - pole przekroju poprzecznego tych drutów.

Jeżeli naklejony tensometr odkształca się o e w kierunku podłużnych odcinków pętlic to zmienia się zarówno długość całkowita l tych odcinków o ∆l, jak pole przekroju S o ∆S, przy czym:

0x01 graphic
0x01 graphic
gdzie:V-współczynnik Poissona. Oprócz tego wskutek odkształcenia drucika ulega również zmianie również i oporność p o ∆p. Dla większości metali 0x01 graphic
.Powstała wskutek tego zmiana oporu ∆R wyrazi się jako funkcja każdego z parametrów: 0x01 graphic
stąd

0x01 graphic
Współczynnik bezwymiarowy k nosi nazwę stałej tensometru i charakteryzuje go pod względem czułości. Wartość stałej k wynosi od 1,5-3 i jest podana przez producenta. Ponieważ opór przewodnika zależy od temperatury, to przy pomiarach musimy stosować czujnik kompensacyjny i pomiaru dokonać w układzie mostkowym. Na mostku tym, mierząc jednostkowe przyrosty oporności mierzymy wielkośc mechaniczną. Najprostszy mostek przedstawiono na rysunku:

W przypadku gdy nie znamy kierunków naprężeń głównych, wtedy wprowadzamy pomiary za pomocą rozety odkształceń, która składa się co najmniej z 3 czujników elektrooporowych czynnych T1, T2, T3.

Mając odkształcenia 0x01 graphic
, odpowiadające czujnikom T1, T2, T3, odkształcenia główne i ich kierunki wyznaczamy ze wzorów:

0x01 graphic
0x01 graphic
Naprężenia główne obliczamy z następujących wzorów uogólnionego prawa Hooke'a dla płaskiego stanu naprężenia:

0x01 graphic
0x01 graphic

VIII. BADANIE ELASTOOPTYCZNE.

Elastooptyczne metody badań naprężeń opierają się na pewnych zjawiskach optycznych zachodzących w niektórych ciałach przeźroczystych, optycznie czynnych, takich jak szkło optyczne, pleksiglas, żelatyna, żywice poliestrowe, żywice epoksydowe itp. Ciała te mające w stanie nieobciążonym własności izotropii mechanicznej i optycznej, pod wpływem wywołanego stanu naprężenia i odkształcenia, wykazują cechy anizotropii optycznej, to znaczy staja się dwójłomne. Ponieważ tego typu dwójłomność związana jest ilościowo z wartością wywołanego stanu naprężenia i odkształcenia - w odróżnieniu od podwójnego załamania światła w krysztale - nazywa się ją dwójłomnością wymuszoną. Zjawisko to polega na tym, że jeżeli przez płytkę modelową, wykonaną z jednego z wyżej podanych materiałów i obciążonych w określony sposób, przepuścimy światło spolaryzowane, to rozczepi się ono w każdym punkcie płytki na dwa promienie przechodzące przez nią z różnymi prędkościami i drgające w płaszczyznach wyznaczonych przez kierunki naprężeń głównych w danym punkcie płytki. Po przejściu tak rozczepionych promieni przez drugi filtr polaryzacyjny uzyskujemy ich interferencję: na ekranie polaryskopu zaobserwujemy obraz płytki modelowej pokryty układem jasnych i ciemnych prążków inferencyjnych.

Badanie elastooporowe służą do badania skomplikowanych konstrukcji. Pozwala to na znalezienie miejsc, w których następuje największa koncentracja naprężeń. Znając takie miejsca możemy dalej liczyć wytrzymałość w tych miejscach. Przykładowo największe naprężenia powstają w miejscach uszkodzeń, pęknięć, w środku rozpiętości zginanej belki.

IX. BADANIE TWARDOŚCI METODĄ BRINELLA I ROCKWELLA.

Brinela. Polega ona na wciskaniu pod obciążeniem F wgłębnika, w postaci hartowanej kulki stalowej o średnicy D, w powierzchnię badanego materiału, w czasie t. Średnica odcisku kuli d, jako średnia z dwóch pomiarów w kierunkach wzajemnie prostopadłych, służy do obliczania pola po­wierzchni czaszy. Twardość według Brinella jest to stosunek siły obciążającej do pola po­wierzchni czaszy odcisku. HB = F/Scz Jako wynik winniśmy przyjąć twardość maksymalną, która wystąpi przy stosunku d/D = 0,4. Ze względów praktycznych norma dopuszcza pomiar twardości za dobry, gdy stosunek d/D jest zawarty w granicach 0,25=0,7. Kulkę należy obciążyć bez wstrząsów w ciągu około 10 s. Średnice odcisków d mierzymy za pomocą mikroskopu z podziałką o dokładności 0,01 mm.

Twardości jest proporcjonalna do wytrzymałości stali, dzięki temu możemy przez odpowiednie przeliczenia oznaczyć rodzaj stali. Możliwości pomiaru twardości w obszarze makro. Jednak skala twardości ma wadę ponieważ jest kłopotliwe wykonanie pomiaru średnicy odcisku i względnie pracochłonne obliczanie twardości. Pomierzona twardości jest zależna od nacisku.

Metoda Rockella opiera się na pomiarze głębokości odcisku wykonanego przez wciśnięcie stożka diamen­towego w powierzchnię badanego materiału; stożek o kącie wierzchołkowym 120° ma wierzchołek zaokrąglony promieniem

r = 0,2 mm. Pomiaru twardości dokonuje się mierząc ,głębokość odcisków.

Dzięki tej metodzie mamy możliwości pomiarów twardości mat. o różnych twardościach. Duże szybkości pomiarów, dzięki czemu metoda ta nadaje się do pomiarów masowych. Wadą tej metody jest istnienie wielu źródeł błędów, szczególnie wynikających z pomiarów głębokości odcisków. Duża liczba skal umownych i przez to konieczności porównywania ich za pomocą tablic.

Metoda Brinella i Rockella są nie jednoznaczne i nie można porównywać wyników tych metod miedzy sobą.

1. zwykła statyczna próba rozciągania metali

2. zwykła statyczna próba ściskania materiałów.

3. ścisła statyczna próba rozciągania metali.

4. próba udarności na młocie charpy'ego.

5 próba skręcania

6. wyboczenie sprężyste.

7. tensometria elektrooporowa.

8. badanie elastooptyczne.

9. badanie twardości metodą brinella i rockwella.



Wyszukiwarka