Wstęp
Zapotrzebowanie na energię w społeczeństwie przełomu XX i XXI wieku jest olbrzymie. Trudno w dzisiejszych czasach wyobrazić sobie życie bez użytkowania energii elektrycznej. Energia ta obecnie jest nam tak samo niezbędna do życia jak woda i powietrze. Samo słowo energia pochodzi od greckiego słowa "energeia" i oznacza działalność. Energia elektryczna jest energią układu ładunków elektrycznych wzajemnie oddziałujących na siebie. Siły elektrostatyczne i elektrodynamiczne między naładowanymi cząstkami powodują ich przyciąganie lub odpychanie. Wykorzystanie energii elektrycznej polega na celowym uporządkowaniu tych elementarnych oddziaływań. Niezbędne do tego jest dysponowanie ciałami różniącymi się między sobą pod względem potencjału elektrycznego. W dobie tak daleko posuniętego rozwoju techniki gdzie wszystkie urządzenia napędzane są za pomocą energii elektrycznej, a sama energia elektryczna stanowi główną gałąź gospodarki każdego kraju - musimy poszukiwać nowych jej źródeł. Aby nie dopuścić do zaistnienia sytuacji w której by nam jej zabrakło, gdyż miałoby to tragiczne skutki dla nas i dla naszego otoczenia. Z powodu braku surowców umożliwiających wyprodukowanie energii w konwencjonalny sposób i ze względu na niedostateczny rozwój niekonwencjonalnych metod jej pozyskiwania nastąpiłoby załamanie w dziedzinie produkcji i co się z tym bezpośrednio wiąże -handlu - nastąpiłby kryzys w gospodarce który miałby tragiczne skutki, szczególnie dla państw wysoko uprzemysłowionych.
Proszę sobie wyobrazić brak możliwości dostarczenia pożywienia i innych środków niezbędnych dla prawidłowego funkcjonowania ludzi np.do Nowego Jorku zamieszkiwanego przez 7,3 min ludzi. Nowoczesne szpitale wyposażone w sprzęt najnowszej generacji przeznaczony do ratowania ludzkiego życia który bez energii elektrycznej nie jest w stanie poprawnie funkcjonować, czy brak oznakowania świetlnego na skrzyżowaniach w wydobycie węgła w 1994 roku dużych miastach z rozbudowaną infrastrukturą komunikacyjną. Służby takie jak policja czy straż pożarna nie byłyby w stanie dotrzeć na czas do potrzebujących pomocy, wywołałoby to nasilenie fali kradzieży i rozbojów. Nastąpiłby całkowity paraliż i to paraliż w skali globalnej. Taka wizja przyszłości nie stanowi jedynie przypuszczeń i domysłów, ma ona swoje realne podstawy. W okresie ostatnich 80 lat zużycie energii na świecie wzrosło 10 krotnie, choć liczba ludzi zwiększyła się tylko 2,5 krotnie. Wzrost jednostkowego zużycia w przeliczeniu na jednego mieszkańca Ziemi rośnie nadal. Coraz większe są również potrzeby energetyczne związane z produkcją żywności. Zapotrzebowanie na energię w społeczeństwie przełomu XX i XXI wieku jest olbrzymie. Trudno w dzisiejszych czasach wyobrazić sobie życie bez użytkowania energii elektrycznej. Energia ta obecnie jest nam tak samo niezbędna do życia jak woda i powietrze.
Rosnące koszty energii i ryzyko wyczerpania się nieodnawialnych zasobów energetycznych zmusiły do poszukiwań alternatywnych źródeł energii. Należą do nich:
- energia słoneczna - wykorzystywana jest w niewielkim stopniu na szeroką skalę przez człowieka. Najkorzystniejsze warunki do jej wykorzystania są w strefie zwrotnikowej, podzwrotnikowej i podrównikowej. Popularna jest jednak w małych gospodarstwach rolnych i domowych. Umieszczane na dachach baterie ogrzewają wodę do celów w gospodarczych lub mogą być wykorzystane do suszenia paszy lub ziaren. Przykład: USA, Kuwejt, Francja.
wykorzystanie siły wiatru - pionierami w tej dziedzinie byli Amerykanie, którzy wybudowali pierwszą elektrownie wietrzną. Elektrownie te zyskały popularność w krajach dysponujących małymi zasobami surowców energetycznych. Wiele tego typu elektrowni działa na małych wyspach i pustynnych oazach. Przykład: Kalifornia (USA), Dania.
- zasoby geotermiczne - wykorzystanie w gospodarstwach domowych, rolnictwie i medycynie energii gorących źródeł i gejzerów. Popularna jest taka energia we Włoszech, USA, w Nowej Zelandii i Islandii.
- energia pływów morskich - rozczłonkowanie linii brzegowej lub występowanie głęboko wciętych zatok sprzyja wykorzystaniu tej energii.
Polega to na wybudowaniu zapory zamykającej ujście do zatoki. Gdy w tej nagromadzi się woda podczas przypływu, zostaje wypuszczona do morza i napędza turbiny elektryczne. Barierą są tu wielkie koszty budowy zapory. Przykład: Rosja, Francja.
- energia biogazów - biogazy są to gazy wytwarzające się w zbiornikach z gnojowicą lub w wysypiskach śmieci. Otrzymywany w biogzowniach gaz służy do produkcji energii elektrycznej bądź ogrzewania mieszkań.
- energia termoelektryczna - wykorzystuje różnice temperatur wód powierzchniowych i głębinowych oceanów. Przykład: jedna z wysp Morza Karaibskiego.
- energia termojądrowa - wyzwala się w czasie spalania wodoru
- energia z łupków i piasków bitumicznych - zawierają one olej mineralny, z którego można otrzymać benzynę i olej opałowy. Technologia ta jest jednak groźna dla środowiska.
Po krótkiej charakterystyce niektórych z alternatywnych źródeł energii, teraz spróbuję je przybliżyć i w szczegółowy sposób scharakteryzować
Energia słoneczna
Podstawowym źródłem energii dla naszej planety jest słońce. Przed milionami lat energia słońca docierająca do ziemi została uwięziona w węglu, ropie naftowej, gazie ziemnym itp. Dzisiaj te paliwa określane są jako konwencjonalne.
Ale słońce póki, co świeci nadal i dostarcza nam energii.
W Kalifornii na pustyni Mojave, 200 km od Los Angeles, w latach 1984-1992 powstał kompleks 13 elektrowni heliotermicznych o różnej mocy. Również w Kalifornii w 1984 r. uruchomiono elektrownię Carissa Plain wytwarzającą energię elektryczną metodą helioelektryczną. Metoda ta polega na bezpośredniej przemianie energii promieniowania słonecznego w energię elektryczną za pomocą ogniw fotoelektrycznych. Ogniwa takie przemieniają w energię elektryczną nie tylko bezpośrednie promieniowanie Słońca, lecz także promieniowanie rozproszone, przy zachmurzeniu.
Elektrownia helioelektryczna o mocy 300 kW pracuje także od 1983 r. na niemieckiej wyspie Pellworm leżącej na Morzu Północnym.
Aktualnie w Europie największa elektrownia słoneczna pracuje we Włoszech, wytwarzając prąd o mocy 3,3 MW. Grecja ma zamiar wybudować do 2003 r. największą na świecie elektrownię słoneczną. Będzie ona wytwarzała prąd o mocy 50 MW, co zapewni energię elektryczną dla 100 tys. mieszkańców.
Lecz elektrownie słoneczne odznaczają się wysokimi kosztami eksploatacyjnymi, co powoduje, że większe nadzieje wiąże się z wykorzystaniem energii słonecznej w małych instalacjach, do produkcji ciepłej wody. Kolektory słoneczne (patrz rysunek nr 2) umieszczone na dachu domu umożliwiają ogrzanie wody do 40°C, co przy ogrzewaniu podłogowym wystarcza do ogrzania całego domu. Pierwszy tego typu dom w Europie powstał niedawno w szwajcarskiej miejscowości Oberburen.
Większe kolektory słoneczne, instalowane m.in. w Stanach Zjednoczonych, podgrzewające wodę do temperatury 65°C. Wykorzystywane są w rolnictwie, do ogrzewania basenów kąpielowych oraz do wytwarzania ciepłej wody tam, gdzie nie ma systemów ciepłowniczych.
Na przykład wyobraźmy sobie, że udało nam się zbudować domek jednorodzinny, którego powierzchnia dachu, nadająca się do zamontowania jakiegoś urządzenia przetwarzającego energię słoneczną w energię cieplną i elektryczną, wynosi 100 m 2 . Powiedzmy, że na początek chcemy Słońcem ogrzać nasz dom, wodę do kąpieli i zmywania naczyń. Ot, takie minimalistyczne wymagania cywilizacyjne.
Do ogrzania pomieszczeń potrzeba, podczas normalnej zimy, około 100 kWh dziennie. Jeżeli przyjąć, że do naszego ogródka dociera 4.8 kWh/m 2 i podgrzewamy dom za pomocą płaskiego kolektora, w którym promieniowanie ogrzewa krążący w cienkich rurkach płyn niezamarzający, to przy około 50- procentowej sprawności potrzebujemy na to około 45 m 2 . Podobnie, aby podgrzać 400 l wody z 10 o do 50 o C, potrzeba dodatkowo 20 m 2 . Ponieważ urządzenie nasze nie będzie działać w nocy, dobrze by było zgromadzić zapas energii. Lecz można również idealnie łączyć alternatywne źródła energii np. energie słoneczną wraz z energią geotermalną (rys. nr 1)
Są również inne pomysły na wykorzystanie energii słonecznej, na przykład w Szwajcarii.
Na szosie w pobliżu Interlaken oddano do użytku instalację, która “zbiera” latem ciepło z rozgrzanej promieniowaniem słonecznym szosy, natomiast zimą oddaje je i podgrzewa jezdnię, przeciwdziałając jej oblodzeniu. Zasada działania instalacji jest następująca: pod jezdnią umieszczono wielką wężownicę, przez którą przepływa mieszanina wody i glikolu. Podgrzana ciecz kierowana jest do wnętrza góry, gdzie następuje oddawanie ciepła skałom za pośrednictwem 91 sond wykonanych z polietylenu. Latem, gdy temperatura asfaltu często przekracza 60°C, skały wewnątrz góry podgrzewają się do ok. 20°C. Cała góra może akumulować 200 tys. kWh energii cieplnej, którą zimą stopniowo się wykorzystuje.
Rysunek nr 1 łączenie alternatywnych źródeł energii, energia słoneczna oraz energia geotermalna.
|
|
|
|
|
|
|
|
|
|
||
|
|
|
Rysunek nr 2 kolektory słoneczne
|
|
Energia geotermalna
W Polsce działają obecnie trzy instalacje geotermalne o łącznej mocy 60 MW i rocznej produkcji ok. 700 GWh. Z danych Ministerstwa Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa wynika, że w ostatnich latach dokonano wielu głębokich odwiertów przy okazji rutynowych badań geologicznych. Mogą one być wykorzystane w instalacjach użytkujących ciepło wnętrza ziemi i rzeczywiście szereg projektów jest w różnej formie przygotowań. Energia geotermalna - energia wnętrza ziemi - czyli naturalna ciepło wnętrza naszej planety zgromadzone w skałach i wypełniających je wodach. Jest to stosunkowo młoda metoda pozyskiwania energii gdyż, po raz pierwszy energię geotermalną zastosowano do produkcji elektryczności dopiero w 1904 r. W Larderello (Włochy). Eksploatacje tzw. Wodno-dominujących studni geotermalnych rozpoczęto uruchomieniem w 1958 roku siłowni o mocy 50 MW w Nowej Zelandii. Większość obecnie pracujących studni geotermalnych pochodzi z lat 70 i 80. Najbardziej znanym miejscem wykorzystywania jest sztuczny geologiczny zbiornik ciepła w Los Alamos (USA) utworzony w skałach o temperaturze 200 c głębokości 2000 m. Obecnie coraz powszechniej stosowane są pompy cieplne umożliwiające wykorzystanie z energii geotermalnej niskotemperaturowej. Energia niskotemperaturowa występuje poniżej głębokości 1 do 1,5 m w skałach i wodach je wypełniających. Pompy cieplne uruchamiane energia elektryczną lub gazową pozwalają na zmianę niskich temperatur uzyskiwanych z ziemi ( 10-30 C) temperatury przydatnej w ciepłownictwie ( 45-80 C),. Powszechność występowania tej energii pozwala żywić nadzieję, że w przyszłości stanie się ona głównym źródłem ogrzewania budynków wolnostojących, odległych od scentralizowanych systemów ciepłowniczych, tak jak jest to obecnie w USA, Szwajcarii, Szwecji i w wielu innych rozwiniętych krajach świata. Aktualnie w Polsce wody geotermalne wykorzystuje się do celów ciepłowniczych w zalewie dwóch miejscach w Bańskiej Niżnej koło Zakopanego oraz w Pyrzycach koło Szczecina. Szacuje się że Polska powinna pokrywać około 15 % swoich potrzeb energetycznych.
Zalety geotermalnego systemu ciepłowniczego.
wygoda w obsłudze - wymiennik ciepła jest urządzeniem praktycznie bezobsługowym
brak specjalnych wymagań - przewagą nad indywidualnymi systemami grzewczymi jest brak dodatkowych wymagań takich jak wentylacja czy komin - jedynym warunkiem jest posiadanie wewnętrznej instalacji CO (i CWU); wymiennik ciepła zajmuje niewiele miejsca i nie emituje hałasu
brak dodatkowych kosztów konserwacji - wymiennik ciepła nie wymaga specjalnej konserwacji, systematycznej wymiany części itp.
bezpieczeństwo - dotychczasowe doświadczenia wskazują na bezawaryjność geotermalnego systemu ciepłowniczego
stabilne i konkurencyjne ceny - ceny ciepła nie zależą od zmian cen paliw na świecie, gdyż głównym źródłem ciepła jest odnawialna energia geotermalna
Rys. 3 Schemat systemu ciepłowniczego Geotermia Podhalańska.
Energia wiatru
Od czasu kryzysu energetycznego (1973 r.) powstało na świecie tysiące instalacji wykorzystujących wiatr do produkcji energii elektrycznej. O opłacalności tych instalacji decyduje duża prędkość wiatru i stałość jego występowania w danym miejscu . Dlatego elektrownie wiatrowe są zazwyczaj budowane na terenach nadmorskich i podgórskich. W Europie Dania, Niemcy, Szwecja i Wielka Brytania znajdują się w czołówce państw wykorzystujących wiatr do produkcji energii elektrycznej. Dania eksploatuje już ponad 5 tys. wiatraków, które w 1997 r. zaspokajały 6,5% zapotrzebowania na prąd. Koleje duńskie (DBS) zamierzają wybudować w pobliżu torów 80 wielkich wiatraków, z których każdy będzie miał generator o mocy 1,5 MW. Energia czerpana z wiatraków pokryje zapotrzebowanie pociągów na prąd, co znacznie obniży emisję zanieczyszczeń powietrza przez dotychczas pracujące elektrownie. Na wybrzeżach Danii ma powstać dalsze pięć kompleksów elektrowni wiatrowych liczących 500 wiatraków. W ten sposób zrealizowana zostanie uchwała rządu zakładająca, że do roku 2008 energia wiatru pokryje 15% zapotrzebowania energetycznego kraju. W Niemczech, w landzie Szlezwik-Holsztyn wiatraki są od dawna elementem krajobrazu. Do końca 1996 r. 1000 zespolonych elektrowni wiatrowych dostarczyło 6% zapotrzebowania energetycznego w tym rejonie . W Szwecji k. Malmo pracuje elektrownia wiatrowa o mocy 3 MW .
Największą w Europie elektrownię wiatrową uruchomiono w 1996 r. w Walii, w pobliżu Carno. Elektrownia ta wyposażona jest w 56 turbin wytwarzających prąd o mocy ponad 30 MW. Niedawno opracowano projekt dotyczący stawiania wiatraków nie tylko na lądzie, ale także na morzu. Powstał on finansowany przez komisję Europejską. Przewodnictwo objął nad nim uniwersytet w Delft w Holandii. planuje się zainstalować tysiące megawatów mocy na wodach przybrzeżnych, m. in. na południowym wybrzeżu Bałtyku, obok polskich wybrzeży. Powstanie farm wiatrowych może stać się miejscem pracy dal wielu ludzi - przykładem są Niemcy - w energetyce wiatrowej zatrudnionych jest tam ponad 100 tys. ludzi.
W Polsce najlepszymi miejscami pod budowę wiatraków jest środkowe wybrzeże (od Koszalina po Hel).
Działanie:
Chłodnego powietrza np. z nad dużej powierzchni zbiornika wody (ocean, morze, jezioro). Wytworzone różnice temperatur powodują przemieszczanie się całych mas powietrza zgodnie z naturalnymi warunkami ukształtowania powierzchni ziemi. Każdy, kto był kiedyś w górach wie dokładnie jak wiatr hula np. na przełęczy górskiej. Taka przełęcz to naturalnie ukształtowany tunel, przez który przepływają masy powietrza. Ale zapewne i typowy mieszczuch zaobserwował zjawisko silnego prądu powietrznego w tunelach ukształtowanych przez zabudowę mieszkalną, a już szczególnie, gdy są to wysokie i długie tzw. wierzowce. W takich tunelach wiatr zwykle wieje nawet wtedy, gdy poza nimi jest bezwietrzna pogoda. Przy powierzchni ziemi wiatr wyhamowywany jest przez nierówności terenu. Tę energie wiatru człowiek postanowił wykorzystać celem ulżenia swoim mięśniom przy wykonywaniu pracy. Już starożytni Chińczycy czy Babilończycy dostrzegali możliwości zaprzęgnięcia wiatru do pracy. Tym pomysłem na przekształcenie siły wiatru w użyteczną pracę było skonstruowanie wiatraka. Pierwsze wiatraki w Holandii pojawiły się już w VIII wieku. Największy rozwój wiatraków następował w XVI i XVII wieku, a po wynalezieniu maszyny parowej nastąpił w ich rozwoju regres. Pod koniec XX wieku wobec kurczących się światowych zasobów paliw energetycznych oraz coraz większej randze nadawanej problemom ochrony środowiska następuje renesans wiatraków.
Prawdziwą potęgą w Europie w dziedzinie produkcji i wykorzystania jest Dania obecna produkcja wiatraków stanowi, co do wartości trzeci produkt eksportowy tego kraju. W USA do sieci energetycznej przyłączone jest obecnie ok. 2000 elektrowni wiatrowych, co zaspakaja ok. 1% ogólnej mocy całego systemu energetycznego tego państwa (ok.1700MW). Przewiduje się w USA, że do roku 2050 elektrownie wiatrowe pokryją 10% zapotrzebowania tego kraju na energie elektryczną. Średnie zasoby wiatrów na całej kuli ziemskiej są ponad 1700 razy większe od energii wytwarzanej przez wszystkie istniejące elektrownie cieplne. W Polsce największe zasoby wiatru znajdują się w Tatrach, Karkonoszach i na wybrzeżu Bałtyku. Ale nawet na obszarze Polski centralnej siła wiatru w ok.40% ma prędkość od 10km/h do 60 km/h. Im wyżej tym wiatr jest silniejszy (wzrasta jego prędkość).
Zrozumiała, zatem jest tendencja do umieszczania wiatraków jak najwyżej. Istnieje podobno nawet pomysł umieszczenia wiatraka na wieży o wysokości 1000 m. Pomysłów w tej materii jest zresztą coraz więcej.
Ktoś zaproponował, aby wykorzystać wiatr indukowany przez pędzące autostradą samochody poprzez zainstalowanie na jej obrzeżach niewielkich wiatraczków.
Kolejnym pomysłem jest sprowadzenie wiatraka do poziomu ziemi wykorzystując w tym celu wentylator osiowy i odwrócenie roli tego wentylatora poprzez zamianę go w turbinę wiatrową oddającą energię do jakiejś maszyny. Zasilanie tego wentylatora miałoby następować tunelem doprowadzającym powietrze z zewnątrz. Przelatująca nad nami energia wiatru jest mało stabilna pod względem prędkości mas powietrza. Wiatr może być tak łagodny jak i huraganowy. Wraz z wiatrem niesione są opady atmosferyczne, pyły i inne zanieczyszczenia, co ma wpływ na trwałość konstrukcji wiatraków. Postęp w zakresie technologicznym pozwala jednak na pokonywanie tych przeciwności, stąd postępujący renesans wiatraków.
Dlaczego technologia i jakość materiałów jest tak ważna?
Otóż na konstrukcję wiatraka i śmigła działają olbrzymie siły
o nierównomiernym rozkładzie sił a konserwacja i dozór tych urządzeń ze względu na duże wysokości ich zainstalowania jest niezwykle pracochłonny i co za tym idzie kosztowny. Dlatego jakość stosowanych materiałów jest tak istotna. Moc elektrowni wiatrowej jest proporcjonalna do powierzchni śmigła omiatanej przez wiatr oraz do sześcianu prędkości wiatru. Podwojenie prędkości wiatru to ośmiokrotny wzrost mocy wiatraka. Średniej wielkości wiatrak o wysokości ok.60m i rozpiętości skrzydeł ok. 44 m pozwala wygenerować moc rzędu 660 kW, co pozwala zaopatrzyć w energię elektryczną duży zakład przemysłowy lub od 300 do 400 gospodarstw domowych. Największy pracujący obecnie na świecie wiatrak ma moc rzędu 2 MW, co pozwala zaopatrzyć w energię sporych rozmiarów miasteczko.
Elektrownie wiatrowe wymagają stosunkowo dużej powierzchni, ze względu na wielkość konstrukcji i dlatego lokowane są z dala od większych miejscowości. Elektrownia o mocy 1MW potrzebuje ok. 1 ha powierzchni ziemi. Większość wiatraków produkuje prąd już przy prędkości wiatru od 10 km/h do 18 km/h a optymalna praca występuje przy prędkości od 54 km/h do 72 km/h. Po przekroczeniu wartości maksymalnej wydajność spada a wiatrak odwraca się od wiatru, co jest wymuszone jego bezpieczeństwem.
Oprócz dużych wiatraków składających się na profesjonalne elektrownie wiatrowe istnieje całe mnóstwo rozwiązań konstrukcyjnych nadających się do wykorzystania jako generatory przydomowe. Energia produkowana przez takie małe elektrownie może być magazynowana w akumulatorach lub zbiornikach ciepłej wody, ale znacznie korzystniej jest przyłączyć takie elektrownie do lokalnej sieci energetycznej. Obowiązujące obecnie w Polsce prawo nakazuje operatorowi sieci przyjąć tę energie do jego sieci.
Rys. 4 Wiatrak
Energia wodna
Energię tę ludzie już od dawien wykorzystywali dla własnych potrzeb. Historia kół wodnych sięga aż do I wieku naszej ery najpierw służyły one do napędzania żaren w młynach, 1000 lat później ludzie zaczęli wykorzystywać energię wody do innych celów- napędzania miechów i innych ciężkich młotów w kuźniach, piły w tartakach i wielu temu podobnych urządzeniach. Dziś ich nowoczesne odpowiedniki w postaci turbin są wykorzystywane do napędzania potężnych generatorów elektrowni wodnych. Ta gałąź przemysłu nosi nazwę hydroenergetyki.
Nowoczesne hydroelektrownie wykorzystują olbrzymie zapory oraz zbiorniki wodne, dzięki czemu powstaje duża różnica poziomów, co gwarantuje stały spad wody z dużych wysokości. Energię tę można pozyskać również dzięki falowaniu morza.
Naukowcy twierdzą ze przy maksymalnym wykorzystaniu energii wód ziemi można by uzyskać aż 2,25 mld kW energii elektrycznej. Nie wykorzystywane zasoby energii wodnej znajdują się przede wszystkim w Afryce. Azji oraz Ameryce południowej. Największe na świecie elektrownie wodne wybudowane na rzekach:Parana na granicy pomiędzy Paragwajem a Brazylią, Kolumbia USA oraz na Jenisie.
Elektrownie wodne w Polsce
Energetykę wodną można podzielić na dwa rodzaje :
- wodne wykorzystujące potencjał energetyczny
- wodne szczytowo-pompowe przechowujące energię wytworzoną w innych elektrowniach (w Polsce elektrowniach cieplnych - węglowych) w okresach małego zapotrzebowania (w nocy) by oddać ją w okresach zapotrzebowania szczytowego.
Potencjał energetyczny naszych wód ocenia się na 12 TWh rocznie. Wykorzystywany jest obecnie w ok. 15%. Uwzględniając prawie całkowity brak ujemnego wpływu na środowisko, ten margines energetyki jest dla gospodarki bardzo ważny.
Stopień wykorzystania energetycznego rzek w wybranych krajach Europy |
|
1. Szwajcaria 2. Francja 3. Hiszpania 4. Norwegia 5. Szwecja 6. Austria 7. POLSKA |
92% 82% 79% 63% 63% 49% 14-15% |
Warto spojrzeć na wykorzystanie tego potencjału w innych krajach europejskich.
Udział elektrowni wodnych w krajowej mocy zainstalowanej w wybranych krajach Europy |
|
1.Norwegia 2.Austria 3.Portugalia 4.Szwecja 5.Włochy 6. POLSKA |
99,8% 66,7% 48,0% 47,3% 31,5% 7,3% |
Moc ważniejszych elektrowni wodnych w Polsce w MW |
|
ZEW - zespół elektrowni wodnych EW - elektrownia wodna ESP - elektrownia szczytowo pompowa |
|
1. ESP Żarnowiec 2. ZEW Porąbka - Żar - Tresna 3. EW Włocławek 4. ESP Żydowo 5. ZEW Solina - Myczkowice 6. ZEW Dychów 7. ZEW Rożnów - Czchów 8. ZEW Koronowo - Tryszczyn - Smukała 9. ZEW Płoty 10.EW Dębe 11.ZEW Straszyn 12.ZEW Jastrowice 13.ZEW Żur- Grodek 14.EW Wały 15.ZEW Pilichowice 16.POLSKA |
716 533,6 160,2 150 144,3 100,9 64 33,3 33 20 13,7 12,9 11,9 10,8 9,2 1813,8 |
Kilka słów o największej w Polsce elektrowni szczytowo pompowej w Żarnowcu. W początkowych planach miała współpracować z elektrownią jądrową. Jej moc wynosi 800/716MW. Sztuczny zbiornik na szczycie wzgórza morenowego o pojemności prawie 14 mln metrów sześciennych i powierzchni 135 hektarów (bardziej obrazowo - 130 boisk piłkarskich) znajduje się 100 metrów powyżej Jeziora Żarnowieckiego, do którego spuszczana jest woda 4 rurami (średnica pozwalająca na wjazd autobusu). Dno zbiornika górnego jest wysłane asfaltem. Przecieki z niego mogłyby zakończyć się tragicznie!
Zasada działania:
Woda ze zbiornika górnego w godzinach szczytowego poboru mocy spuszczana jest rurami w dół; na końcu trafia na turbinę z generatorem i wytwarza prąd; trwa to około 4,5-5 godzin. Najczęściej nocą, gdy zapotrzebowanie na prąd elektryczny w sposób naturalny radykalnie spada - przeprowadza się cykl odwrotny. Silnik napędzający turbinę (w poprzednim cyklu pełnił rolę generatora) pobiera energię elektryczną z sieci - o tej porze jest jej nadmia r i należałoby odstawić bloki w elektrowniach cieplnych, co jest i nieekonomiczne, i kłopotliwe technicznie, elektrownia szczytowo-pompowa akurat odbiera nadmiar mocy. W ciągu 6 godzin zbiornik górny jest ponownie napełniony.
Rys. 5
Energia wód morskich
Aktualnie wykorzystuje się energię pływów morskich, fal morskich oraz energię cieplną mórz. Przewiduje się wykorzystanie energii prądów morskich. Największa na świecie elektrownia pływowa, uruchomiona w 1967 r., pracuje we Francji przy ujściu rzeki La Rance do Kanału La Manche (k. Saint-Malo). Ma ona 24 turbiny wodne o mocy po 10 MW, a więc jej moc wynosi 240 MW. Elektrownie wykorzystujące pływy morskie pracują także w Kanadzie, Chinach i Rosji. Projektowane są w Wielkiej Brytanii, Korei Południowej i w Indiach. Elektrownie wykorzystujące energię fal morskich, napędzających turbiny wodne, pracują np. na norweskiej wyspie Toftestallen k. Bergen, dając moc 350 kW, oraz na wyspie Islay u wybrzeży Szwecji. Energię uzyskuje się też przez wykorzystanie różnicy temperatury wody oceanicznej na powierzchni i w głębi oceanu.
Istnieją dwa rozwiązania wykorzystania energii fal morskich napędzających albo turbinę wodną albo powietrzną.
Energia pływów morskich
W pierwszym rozwiązaniu woda morska pchana kolejnymi falami wpływa zwężającą się sztolnią do położonego na górze zbiornika. Gdy w zbiorniku tym jest wystarczająca ilość wody, wówczas przelewa się ona przez upust i napędza turbinę rurowš Kaplana, sprzężona z generatorem. Po przepłynięciu przez turbinę woda wraca do morza. Wykorzystana jest więc przemiana energii kinetycznej fal morskich w energię potencjalną spadu.
Instalacja taka pracuje od 1986r. na norweskiej wyspie Toftestallen koło Bergen dając moc 350kW. Takie rozwiązanie jest znane pod skrótem OWC
W drugim rozwiązaniu zbiornik jest zbudowany na platformach na brzegu morza. Fale wlewają się na podstawę platformy i wypychają powietrze do górnej części zbiornika. Sprężone przez fale powietrze wprawia w ruch turbinę Wellsa, która napędza generator. Rozwiązanie takie jest znane pod skrótem MOSC. Na rysunku pokazano schemat takiej elektrowni, zbudowanej na wyspie Jslay u wybrzeży Szkocji.
Norwegia buduje elektrownie wykorzystujące fale morskie o mocy 2MW na wyspie Tongatapu na południowym Pacyfiku, kosztem 7,1$.
Elektrownię typu MOSC projektuje się obecnie w Szkocji. Będzie ona miała moc 2000MW i będzie składała się z modułów po 5MW. Będzie ona też ochraniała brzeg morski przed zniszczeniem.
Energia cieplna oceanu
Przemiana energii cieplej oceanu to wykorzystanie różnicy temperatury wody na powierzchni i w głębi morza lub oceanu. Jest to możliwe na obszarach równikowych; woda morska ma tam na powierzchni temperaturę ok. 30 0C, a na głębokości 300-500m temperaturę ok. 7 0C. Wykorzystanie tej różnicy temperatury odbywa się przy zastosowaniu amoniaku, freonu lub propanu, który paruje w temperaturze wody powierzchniowej i jest skraplany za pomocą wody czerpanej z głębokości 300-500 m. Cała instalacja, wraz z generatorem, znajduje się na pływającej platformie i nosi nazwę elektrowni maretermicznej. Energia elektryczna jest przesyłana na ląd kablem podmorskim. Prąd wytwarzany w takich elektrowniach wykorzystywany jest na wyspie Bali w Indonezji (5 MW), w Japonii (10 MW), na Tahiti (5 MW) i na Hawajach (40 MW).
Energia biomasy
Biomasa są to rośliny na ogół jest to słoma bądź drewno z drzew szybko-rosnących np. wierzba. Przy ich spalaniu emisja CO2 jest równa ilości tego związku jaką pobrała roślina w czasie wzrostu, co w bilansie końcowym wychodzi na „0”. Jako źródło energii biomasa jest również, przy racjonalnej gospodarce odnawialna, (w przeciwieństwie do ropy czy gazu). Nie ma również pronlemu z utylizacją, gdyż popiół jest znakomitym nawozem, jest to paliwo stosunkowo wydajne, dwie tony suchej biomasy słomy lub drewna, są równoważne energetycznie tonie węgla kamiennego. Również ze względów ekonomicznych warto się zastanowić nad zmianą dotychczasowego paliwa.
Do produkcji energii może być wykorzystane drewno odpadowe z sadów i zieleni miejskiej (ok. 20 mln m3 rocznie) oraz odpady przemysłu drzewnego (ok 2 - 3 mln m3 rocznie). Zasoby drewna dla celów energetycznych można też powiększyć o 3 mln m3 odpadów z recyklingu (połamane opakowania, palety itp.), jednak ich wykorzystanie dla celów energetycznych może być utrudnione ze względu na ich rozproszenie, niejednorodność, zanieczyszczenie związkami chemicznymi i metalami ciężkimi. Zawartość metali ciężkich może też ograniczać wykorzystanie zasobów drewna odpadowego z zieleni miejskiej.
Uwzględniając obecne zasoby drewna opałowego i odpadów drzewnych (z leśnictwa, sadownictwa, przemysłu drzewnego oraz parków i zieleńców), potencjał techniczny szacuje się na 270 PJ rocznie. Liczba ta może wzrosnąć zasadniczo, jeśliby tereny o gruntach skażonych i ubogich wykorzystać do uprawy lasów szybko rosnących.
Wykorzystanie drewna jako opału ma w Polsce długą tradycję. Natomiast technologie jego spalania dopiero od niedawna zapewniają efektywne użytkowanie energii zawartej w drewnie i ograniczają emisje pyłów i gazów w procesie spalania. Liczbę takich nowoczesnych instalacji szacuje się na około 40 (kotłownie przemysłowe i osiedlowe o łącznej mocy do 7 MW). Ponadto funkcjonuje wiele małych kotłów na drewno (o mocy od 20 do 80 kW). Część odpadów drzewnych wykorzystuje w miejscu ich powstawania przemysł drzewny, głównie do produkcji ciepła lub pary użytkowanej w procesach technologicznych. Ilość odpadów przekracza jednak wewnętrzne zapotrzebowanie przemysłu drzewnego i istnieje możliwość ich wykorzystania do ogrzewania osiedli mieszkaniowych, budynków użyteczności publicznej itp. Na początku 1998 r. moc instalacji wykorzystujących drewno jako źródło energii oceniano na 600 MW .
Pewna ilość odpadów drzewnych jest także spalana w piecach węglowych w domach i starych kotłowniach osiedlowych. Rocznik statystyczny GUS ocenia, że zużycie energii pierwotnej (łącznie komercyjne i nie komercyjne) drewna i torfu wynosiło w 1997 r. ok. 120 PJ .
Słoma jest istotnym źródłem energii odnawialnej. Polskie rolnictwo produkuje rocznie około 25 mln ton słomy (głównie zbożowej i rzepakowej). Słoma ta jest częściowo wykorzystywana jako ściółka i pokarm w hodowli zwierząt oraz do nawożenia pól. W ostatnim okresie rolnicze wykorzystanie słomy spada, głównie w wyniku obniżenia się pogłowia zwierząt hodowlanych. Od 1990 r. rosną nadwyżki słomy do poziomu 12 mln ton rocznie. Wstępują one przede wszystkim w gospodarstwach rolnych północnej i zachodniej Polski, gdzie przeważają gospodarstwa duże (także dawne PGR-y). Większość tych nadwyżek jest spalana na polach, co powoduje poważne zagrożenia dla zdrowia mieszkańców i szkody ekologiczne. Takie nadwyżki słomy, o wartości opałowej równej 167 PJ, mogą być wykorzystane dla celów energetycznych przynosząc dodatkowe dochody rolnikom. Wykorzystanie
Obecnie działa 7 kotłowni opalanych słomą o łącznej mocy 13 MW (od 500 kW do 5,5 MW). Szacuje się też, że do początku 1999 r. zainstalowano około 100 małych kotłów na słomę gospodarstwach rolnych o łącznej mocy 20 MW.
Biomasa zawierająca dużą ilość wilgoci (nie wysuszona) nie nadaje się do spalania, może natomiast być zużytkowana w procesie fermentacji beztlenowej (metanowej), celem uzyskania produktu zwanego biogazem. Przykładem może być zautomatyzowana i skomputeryzowana instalacja biogazu pracująca na wysypisku śmieci w Toruniu. Instalacja ta produkuje 550 kW energii elektrycznej oraz 800 kW energii cieplnej na godzinę, wykorzystywanej do ogrzewania mieszkań. Wyprodukowana w ciągu roku energia odpowiada energii uzyskanej ze spalenia 2,6 tys. ton węgla. Innym sposobem uzyskania energii z biomasy jest jej kompostowanie i ujęcie wydzielanego ciepła. W Szwecji opracowano program produkcji biomasy roślinnej, tworząc specjalne plantacje energetyczne. Obecnie uzyskuje się tam 50-70 m3 masy drewna wierzbowego wyhodowanego na powierzchni 1 ha w ciągu roku. Do tego należy dodać 4-7 ton biomasy wytworzonej z liści i korzeni tych drzew. Zwrot kosztów założenia plantacji następuje po pięciu latach.
Podsumowanie
Rozwój tak znienawidzonej przez skrajne ruchy ekologiczne cywilizacji energochłonnej przeniósł do lamusa historii wielkoprzemysłową klasę robotniczą i uwolnił człowieka od ciężkiej pracy fizycznej. Było to możliwe, ponieważ wyczerpywaniu się prymitywnie dostępnej energii słonecznej towarzyszyły odkrycia naukowe pozwalające wykorzystywać nowe źródła energii, zdeponowane w ziemi. Nie ulega wątpliwości, że proces wyczerpywania się paliw kopalnych stanie się prędzej czy później dramatycznym problemem cywilizacji. Oszczędniejsze zużywanie energii, próby racjonalizacji jej zużycia, sięganie po dostępne w małej skali lokalne źródła, jak choćby wspomniane wcześniej bezpośrednie ogrzewanie domów słońcem, wszystko to może odrobinę opóźnić ten problem, ale go nie rozwiąże. Na razie zużywamy depozyt energii z przeszłości, który jest jednak skończony. Ludzkość, by się rozwijać, musi sięgnąć po inne, nie związane z strumieniem energii słonecznej źródła energii. A Polska?
Sytuacja energetyczna Polski prowadzi do wniosku, że pilnym problemem jest zastępowanie węgla, jako źródła energii finalnej, energią elektryczną i gazem ziemnym, co oznacza, że do 2010 roku należy co najmniej podwoić wytwarzanie energii elektrycznej oraz znacznie zwiększyć dostawy gazu ziemnego. Do tego czasu należy przeprowadzić modernizację elektrowni i elektrociepłowni węglowych, a przede wszystkim zainstalować systemy oczyszczania gazów odlotowych. Sprawność usuwania szkodliwych gazów powinna przy tym wzrosnąć z obecnych 3% do 80-90%. W przeciwnym razie presja sąsiednich krajów europejskich wynikająca z umów międzynarodowych dotyczących poszanowania środowiska naturalnego będzie tak wielka, że zostaniemy zmuszeni do rezygnacji z elektrowni węglowych.
Musimy budować elektrownie gazowe, a także gazowo-parowe, które są o wiele bardziej proekologiczne od węglowych. Niestety, ich funkcjonowanie zależeć będzie od importu gazu, co uzależni naszą energetykę od Rosji, jeżeli nie zapewnimy jego dostaw z innych rejonów świata. Trzeba więc podjąć działania w sprawie budowy w Polsce pierwszej elektrowni jądrowej i o pracować program dalszego rozwoju energetyki jądrowej. W moim przekonaniu rozwój energetyki jądrowej i stopniowa likwidacja siłowni węglowych jest wariantem nie tylko najlepszym ze względów ekologicznych, ale również opłacalnym ekonomicznie. Te względy, j a k również wyczerpywanie się zasobów paliw organicznych, spowodują, że XXI wiek będzie wiekiem energetyki jądrowej.
Literatura:
“Energetyka a ochrona środowiska” J.Kucowski, D.Laudyn. M.Przekwas, W-wa 1994
“Energia. Jak oszczędzać energię. Poradnik użytkownika” 6/19 lipiec 1996
“Wiedza i życie” 11/1998 - “Energetyczne dylematy” - Łukasz A.Turski
“Wiedza i życie” 12/1997 - “Energia i my” - Łukasz A.Turski
“Wiedza i życie” 11/1996 - “Czy Polska potrzebuje energetyki jądrowej” - Andrzej Z. Hrynkiewicz
“Świat nauki” 11/1998 - “Termiczne ogniwa fotowoltaiczne” - T.Coutts, M.Fitzgerald
“Inteligentny dom” 1/1998-11-22
“Energetyka jądrowa, człowiek i środowisko” - Centrum Informatyki Jądrowej W- wa1998
Praca pochodzi z serwisu www.e-sciagi.pl