z1 07a, SPRAWOZDANIA czyjeś


Ireneusz Jańczak Głogów, 10 października 1999

Rok stud./Gr.: III/TEL

Rok akad.: 1999/2000

Termin i miejsce: WTOREK , godz. 1515 - 1655 , sala 142, bud. C-4

Prowadzący: dr inż. Wojciech J. Krzysztofik

Opracowanie zadania nr 7 z listy Z-1 ( szeregi i transformaty Fouriera)

Zad.7. Znaleźć transformaty Fouriera, wykorzystując jej własności, następujących sygnałów:

Rozwiązanie :

Ponieważ wszystkie podane sygnały mają skończoną energię, do rozwiązania użyję metody różniczkowania oraz odpowiednich własności, jak np. „ przesunięcie w dziedzinie czasu”.

0x08 graphic
a)

F(jϖ)

0x08 graphic
Po zróżniczkowaniu otrzymujemy :

jϖF(jϖ)

Po kolejnym zróżniczkowaniu otrzymujemy:

0x08 graphic

2F(jϖ)

Obliczmy transformatę Fouriera:

0x08 graphic

0x08 graphic

0x08 graphic
Zatem..

b)

Używając tej samej metody:

0x08 graphic

F(jϖ)

Po zróżniczkowaniu:

0x08 graphic

jϖF(jϖ)

Po kolejnym zróżniczkowaniu:

0x08 graphic

2F(jϖ)

0x08 graphic
Obliczmy transformatę Fouriera:

0x08 graphic
Zatem....

c)

0x08 graphic

F(jϖ)

Po zróżniczkowaniu:

0x08 graphic

jϖF(jϖ)

Po ponownym zróżniczkowaniu:

0x08 graphic

2F(jϖ)

Obliczmy transformatę Fouriera:

0x08 graphic

0x08 graphic
Zatem.....

Wnioski z zadania:

Biorąc pod uwagę uzyskane wyniki widzimy iż wszystkie zadane przebiegi można przedstawić zarówno w dziedzinie czasu jak i w dziedzinie częstotliwości . Jak należało się spodziewać, gęstości amplitudowe okazały się funkcjami parzystymi, natomiast fazowe nieparzystymi.

Odnosząc się do podpunktu a) można zauważyć iż funkcja reprezentująca ciągłą transformatę Fouriera, danego przebiegu, ma czysto charakter rzeczywisty. Wynikiem tego jest przyjmowanie przez gęstość fazową tylko wartości -π, 0 i π (wykres schodkowy). W podpunkcie b) widzimy, iż F(jϖ) jest funkcją zespoloną, co od razu rzutuje na postać wykresu: arg(F(jϖ)), który przyjmuje różne wartości. Podpunkt c) obrazuje nam ciekawą własność. Choć przebieg czasowy jest częścią funkcji typu cos(t), to jego widmo nie składa się wyłącznie z jednego prążka częstotliwości ( jednej składowej), lecz z wielu. Dzieje się tak dlatego iż to właśnie te inne składowe powodują, w wyniku ich całkowitego zsumowania, zniesienie się wartości funkcji w czasie, poza przedziałem (-π/2, π/2) do zera. Tu także F(jϖ) ma charakter rzeczywisty więc arg(F(jϖ)) zachowuje się tak samo jak w podpunkcie a).

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic



Wyszukiwarka