Alkany i cykloalkany, chemia, chemia organiczna


Węglowodory alifatyczne - alkany i cykloalkany

0x01 graphic

Wprowadzenie

Alkany są grupą węglowodorów noszących nazwę węglowdorów nasyconych lub węglowdorów parafinowych (parafin).
Symbol alkanów - RH (R - grupa alkilowa).
Wzór ogólny - CnH2n+2.
Hybrydyzacja atomów węgla - sp3.
Podstawowe wiązanie - σ
Właściwości struktury

Typ wiązania

Długość wiązania

Przykład

Długość wiązania

Csp3-Csp3

1,54Ao

CH3-CH3

83Kcal/mol

0x01 graphic

Nazewnictwo

Nazewnictwo alkanów

Nazwy pierwszych czterech węglowodorów są tradycyjne:

CH4 - metan
C2H6 (CH3-CH3) - etan
C3H8 (CH3-CH2-CH3) - propan
C4H10 (CH2-CH2-CH2-CH3)- butan

Pozostałe nazwy tworza się od liczebników greckich (wyjatek: nonan i indekan - utworzone od liczebników łacińskich), dodając końcówkę - an
W przypadku węglowodorów o budowie rozgałęzionej przyjmuje się następujące reguły nazewnictwa systematycznego:

O ile mamy związek

0x01 graphic

To najdłuższy jest łańcuch siedmiowęglowy, który numerujemy jak we wzorze.
Nazwa węglowodoru dla prezentowanego przykładu jest następująca 3,5 dietylo- 2,3,6 trimetyloheptan
W niektórych przypadkach dopuszczalne jest stosowanie nazw z przedrostkiem izo dla podkreślenia budowy rozgałęzionej, na przykład:
2-metylopropan , izobutan

0x01 graphic

W przypadku butanu istnieją cztery odmiany izomeryczne - dwie pochodzące od n-butanu i dwie wywodzące się z izobutanu o rozgałęzionym łańcuchu. Jak pokazano niżej, są one oznaczone przedrostkami; n -(normalny), sec (drugorzędowy), izo- i tert- (trzeciorzędowy).

0x01 graphic

2-metylobutan, izopentan

0x01 graphic

Ogólnie można przytąć, że nazwy z przedrostkiem izo, są jedynie dopuszczalne, gdy rozgałęzienie w postaci grupy metylowej występuje przy drugim atomie węgla w łańcuchu, na przykład
2-metylobutan lub izopentan

0x01 graphic

ale dla.

0x01 graphic

mamy tylko 3-metylopentan

0x01 graphic

Nazewnictwo cykloalkanów

Węglowodory cykliczne - nazwy tworzy się przez dodanie przedrostka cyklo- do nazwy odpowiedniego węglowodoru łańcuchowego o tej samej liczbie atomów węgla.

0x01 graphic

0x01 graphic

Właściwości fizyczne

Właściwości fizyczne alkanów zależne są od liczby atomów węgla w cząsteczce;

Pierwsze człony szeregu homologicznego C1 - C4 są gazami, C5 - C16 cieczami a wyższe ciałami stałymi. Nie rozpuszczaja się w wodzie, rozpuszczają się w eterze, benzenie i innych rozpuszczalnikach organicznych. Temperatura wrzenia i topnienia zależy od budowy łańcucha. Węglowodory o łańcuchu rozgałęzionym mają niższe temperatury wrzenia a wyższe temperatury topnienia od izomerycznych węglowodorów normalnych.

0x01 graphic

Otrzymywanie

Poza naturalnymi żródłami takimi jak:

Otrzymuje się je syntetycznie w reakcjach:

synteza z pierwiastków

C + 2H2 --> CH4

uwodornienie katalizowane Pt, Pd lub Ni

CO + 3H2 --> CH4 + H2O
CH2=CH2 + H2 --> CH3-CH3

redukcja halogenków alkilów a w tym;

reakcja Wurtza ma zastosowanie tylko do syntezy symetrycznych alkanów

R1X + Na + XR1 --> R1-R1 + 2NaX
C2H5-Br + 2Na + Br-C2H5 --> C2H5-C2H5 + 2NaBr

Hydroliza odczynnika Grignarda (RX + Mg -->RMgX) z wodą lub innym słabym kwasem

CH3-CH2-CH2Cl + Mg --> CH3-CH2-CH2MgCl (w środowisku eteru)
CH3-CH2-CH2MgCl + HOH --> CH3-CH2-CH2H + Mg(OH)Cl

Redukcja metalem w środowisku kwasowym

RX + Zn + H+ --> RH + Zn2+ + X-

reakcja halogenków alkilów ze związkami metaloorganicznymi

RX + Li --> RLi (alkilolit)
RLi + CuX -->R2CuLi (dialkilomiedzian)
R2CuLi + R'X --> R-R'

w reakcji R może być I-szo, II-go lub III-cio rzędowy natomiast R' może być tylko I-szo rzędowy

Przykład:

CH3Br + Li --> CH3Li (metylolit)
CH3Li + CuI --> (CH3)2CuLi (dimetylomiedzian litu)
(CH3)2CuLi + CH3(CH2)7I --> CH3(CH2)7CH3 n-nonan

0x01 graphic

Właściwości chemiczne

Trudno ulegają reakcjom jonowym, natomiast dość łatwo reakcjom wolnorodnikowym, szczególnie reakcjom podstawienia. Przykładem jest reakcja halogenowania

Halogenowanie

R-H + X2 --> R-X + H-X

0x01 graphic

Drugą podstawową reakcją alakanów jest reakcja spalania, przy nadmiarze powietrza (tlenu)

CnH2n+2 + (3n+1)O2 ----> nCO2 + (n+1)H2O

Przykład

C5H12 + 8O2 ----> 5CO2 + 6H2O

Trzecią, mającą praktyczne znaczenie jest reakcja pyrolizy (kraking). Jest to reakcja mająca na celu rozkład cząsteczek weglowdorów na mniejsze cząsteczki. Piroliza (kraking)- przebiega w temperaturze 400-600oC i w obecności katalizatora

alkan --> H2 + alkany o mniejszych czasteczkach + alkeny

Typy reakcji związków organicznych

0x01 graphic

Typy reakcji związków organicznych

W chemii związków organicznych wyróżnia się trzy zasadnicze typy reakcji chemicznych

R-X + Y ---> R-Y + X

A + B ---> C

A ---> B + C

A ---> B

0x01 graphic

Mechanizmy reakcji związków organicznych

Każdy z wymienionych wyżej typów reakcji, może zajść według;

To według jakiego mechanizmu będzie przebiegała reakcja chemiczna, będzie to zależało od środowiska w jakim przebiega reakcja chemiczna.
Jeżeli wyobrazimy sobie cząsteczkę o ogólnym wzorze A:B, gdzie (:) - przedstawia parę elektronową wiążącą składniki A i B.
to właśnie ta para elektronowa może ulec:

0x01 graphic

W przypadku, gdy A jest bardziej elektroujemny to A staje się jonem ujemnym

0x01 graphic

a jeżeli B jest bardziej elektroujemny to A staje się jonem dodatnim

0x01 graphic

Dla związków organicznych takie rozparowanie oraz przesuniecie pary elektronowej spowoduje powstanie

0x01 graphic

Rodniki Najczęściej rodniki powstawją w wyniku reakcji oderwania atomu wodoru od cząsteczki związku organicznego. Jeżeli następuje oderwanie pierwszorzędowego atomu wodoru, to spowoduje powstanie pierwszorzędowego rodnika, oderwanie drugorzędowego atomu wodoru powoduje utworzenie rodnika drugorzędowego itd. Otóż zauważono, że względna łatwość odrywania się atomu wodoru, przedstawia się następująco.

3o > 2o > 1o > CH3*

I odpowiednio, trwałość wolnych rodników jest następująca

3o > 2o > 1o > CH3*

Z tego wynika, że im trwalszy jest wolny rodnik, tym łatwiej się tworzy. Takie uogólnienie jest szczególnie użyteczne, ponieważ trwałość rodników decyduje o orientacji i reaktywności podczas wielu reakcji, w których powstają wolne rodniki.

Karbokationy Karbokationem jest grupa atomów zawierających atom węgla jedynie z sześcioma elektronami. Podobnie jak w wolnych rodnikach, rozróżnia się karbokationy;

0x01 graphic

Karbokation, podobnie jak wolny rodnik, jest nadzwyczaj reaktywną cząsteczką. Jest to wynikiem deficytu elektronów i tendencją atomu węgla do uzupełnienia oktetu elektronów.
O trwałości karbokationów decydują czynniki sprzyjające rozproszeniu dodatniego ładunku na atomie węgla na którym występuje deficyt elektronów. Tym czynnnikiem jest rodzaj podstawnika (Z) przyłączony do tego atomu węgla, który może oddawać lub przyciągać elektrony.

Z---->C+ - Z oddaje elektrony (obserwujemy stabilizację kationu)
Z<----C+ - Z przyjmuje elektrony (obserwujemy destabilizację kationu)

Podstawnik oddający elektrony przyczynia się do zmniejszenia dodatniego ładunku węgla z deficytem elektronów, przez co sam staje sie w pewnym stopniu dodatni. To rozproszenie ładunku stabilizuje karbokation.

Podstawnik przyciągający elektrony przyczynia się do zwiększenia dodatniego ładunku atomu węgla z niedoborem elektronów i w ten sposób powoduje zmniejszenie trwałości karbokationu.

W przypadku oddziaływania podstawnik - węgiel z deficytem elektronów, mamy do czynienia z tzw. efektem indukcyjnym o którym więcej w dalszej części rozdziału.

Podobnie jak i w przypadku rodników , również i w przypadku karbokationów wielkością dla nich charakterystyczną jest ich trwałość. I tak dla karbokationów alkilowych, szereg trwałości karbokationów jest następujący.

3o > 2o > 1o > CH3+

Zmiany trwałości karbokationów są spowodowane zmianą liczby grup alkilowych połączonych z atomem węgla, na którym występuje niedobór elektronów.
Im większa liczba grup alkilowych, tym trwalszy karbokation; oddawanie elektronów przez te grupy powoduje rozproszenie ładunku i stabilizację jonu

0x01 graphic

Wpływ budowy cząsteczki związku organicznego na mechanizm reakcji związku organicznego

W reakcjach związków organicznych, pomijając warunki podane wyżej, ważną rolę odgrywa budowa cząsteczki związku organicznego ulegająca reakcji, tj.

Ponadto dużą rolę odgrywa obecność wiązań atomowych spolaryzowanych. Stopień spolaryzowania zależy od tego, pomiędzy jakimi atomami występuje wiązanie.
Najczęściej w związkach organicznych mamy do czynienia z wiązaniami:

Wiązania węgiel - węgiel, są wiązaniami o charakterze atomowym. W wyniku obecności różnych podstawników w cząsteczce wiązanie to może ulec polaryzacji.

Przykłady

Z wiązaniem czysto atomowym mamy do czynienia w cząsteczce etanu

CH3-CH3

Jeżeli wystąpią różnice podstawienia przy każdym atomie węgla, to otrzymamy wiązania atomowe o małym stopniu spolaryzowania

0x01 graphic

Przykład

0x01 graphic

Wiązania pomiędzy atomem węgla i atomem wodoru: C-H, są minimalnie spolaryzowane w kierunku do atomu wodoru.
Decydujący wpływ na wielkość momentu dipolowego w wiązaniu C-H, odgrywa hybrydyzacja atomu węgla. I tak;

Dlatego alkany w których występują tylko wiązania C-C i C-H, łatwo ulegają rozpadowi wolnorodnikowemu. Szczególnie dotyczy to wiązania C-H.

CH4 + Cl2 --> CH3Cl + HCl

Alkeny i alkiny ze względu na obecność wiązań wielokrotnych dają przede wszystkim reakcje przyłączenia i to zarówno według mechanizmu jonowego, jak i wolnorodnikowego o czym decydują warunki reakcji.

H2C=CH2 + HCl --> H3-CH2-Cl chlorek etylu

Wiązania pomiędzy atomem węgla i atomem centralnym podstawnika (grupy funkcyjne), np. C-OH, C-Cl, C-NO2 itd.
Są to wiązania atomowe spolaryzowane w kierunku centralnego atomu podstawnika. Wiązania te przede wszystkim ulegają rozpadowi jonowemu i tym samym łatwo dają reakcje podstawienia szczególnie w szeregu alkanów, np;

H3C-Cl + H-OH --> H3C-OH + HCl

Sam fakt spolaryzowania wiązania określa się pojęciem efektu indukcyjnego oznaczanego - Is (statyczny) Zależnie od tego czy wiązanie atom węgla - podstawnik (Z) spolaryzowane jest w kierunku do atomu węgla czy do podstawnika, otrzymujemy efekt indukcyjny dodatni lub ujemny

C --> Z mamy do czynienia z -Is
C <-- Z mamy do czynienia z +I
s

Wszystkie podstawniki tzn. -X(chlorowce), -OH, -CHO, -COOH, -NH2, -NO2, dają ujemny efekt indukcyjny -Is, natomiast grupy alkilowe R mają dodatni efekt indukcyjny +Is. jest to spowodowane polaryzacją wiązania C --> R.
W przypadku gdy podstawnik związany jest z atomem węgla, który połączony jest wiązaniem podwójnym z drugim atomem węgla, np. H2C=CHCl, wówczas występuje oddziaływanie: podstawnik - układ węglowy.
Oddziaływanie to określa się pojęciem efektu mezomerycznego, inaczej efektu sprzężenia i oznacza się +/-M.. Ze względu na powyższe oddziaływania podstawniki dzielimy na:

0x01 graphic

Reakcje substytucji, addycji i eliminacji

Majac na uwadze rodzaj i sposób zachodzenia zmian w budowie cząsteczek substratów, reakcje związków organicznych można sklasyfikować jako reakcję:

względnie jako

Reakcje substytucji

Substytucja rodnikowa (SR), to reakcja przebiegająca z udziałem wolnych rodników, które powstają stale w wyniku reakcji łańcuchowej.

Substytucja jonowa, może przebiegać jako reakcja elektrofilowa SE lub jako reakcja nukleofilowa SN.
Substytucja elektrofilowa SE: jest to substytucja, w której cząsteczka elektrofilowa atakuje związek nukleofilowy. Takimi substancjami elektrofilowymi są cząsteczki albo jony odznaczające się niedoborem elektronów (H+, AlCl3, biegun dodatni wiązań atomowych spolaryzowanych).
Substytucja nukleofilowa SN, jest to reakcja substytucji, która zachodzi w wyniku ataku czynnika nukleofilowego na elektronowe centrum związku chemicznego. Czynnikami nukleofilowymi są cząsteczki lub jony odznaczjące się nadmiarem elektronów (OH-, Cl-, cząsteczki z wolnymi parami elektronów (NH3), cząsteczki z niepolarnym wiązaniem  (eten, benzen)). Sama reakcja może przebiegać według kinetyki pierwszego lub drugiego rzędu. Odpowiednio wtedy dla reakcji pierwszego rzędu (szybkość reakcji zależy tylko od stężenia jednego substratu), mechanizm reakcji określa się symbolem SN1 i odpowiednio dla reakcji drugiego rzędu (szybkość reakcji zależy od stężenia dwóch substratów) mechanizm reakcji określa się symbolem SN2.

Reakcje addycji

Addycja rodnikowa AR; jest to reakcja przyłączenia przebiegająca w postaci łańcuchowej z udziałem wolnych rodników.

Addycja jonowa, podobnie jak substytucja jonowa może przebiegać jako reakcja elektrofilowa AE lub jako reakcja nukleofilowa AN
Addycja elektrofilowa AE; jest to reakcja przyłączenia, która przebiega w wyniku ataku czynnika elektrofilowego na cząsteczkę nukleofilową.
Addycja nukleofilowa AN; jest to reakcja przyłączania, która przebiega w wyniku ataku czynnika nuklefilowego na elektronowe centrum związku chemicznego.

Reakcja eliminacji

Jest to reakcja chemiczna, w której od jednej cząsteczki substratu oddzielają się dwa atomy albo grupy atomów i nie są zastępowane innymi. Otrzymane produkty zwierają wiązania wielokrotne. Przykładami reakcji eliminacji są reakcje odwodornienia i odwodnienia.
Reakcje eliminacji mogą przebiegać zgodnie z kinetyką pierwszego rzędu E1 lub z kinetyką drugiego rzędu E2

Reakcjom wolnorodnikowym sprzyjają następujące warunki:

Natomiast reakcje jonowe mają przede wszystkim miejsce w następujących warunkach:

Poniżej w tabeli zestawiono charakterystyczne reakcje dla węglowodorów i niektórych pochodnych.

Charakterystyczne reakcje dla węglowodorów i niektórych pochodnych

Grupa funkcyjna

Wzór

Charakterystyczne reakcje

Alkany

C-C, C-H

Substytucji (z H, zwykle z Cl i Br)

Alkeny

C=C-C-H

Addycji
Substytucji (z H)

Alkiny

CC-H

Addycji
Substytucji (z H)

Chlorki alkilowe

H-C-C-X

Substytucji (z X)
Eliminacji (z HX)

Alkohole

H-C-C-O-H

Substytucji (z H); Substytucji (z OH)
Eliminacji (z HOH)

Etery

()C-O-R

Substytucji (z OR); Substytucji (z H)

Aminy

C-NRH

Substytucji (z H);
Addycji (na N)

Benzen

C6H6

Substytucja (z H)

Aldehydy

0x01 graphic

Addycji
Substytucji (z H i H)

Ketony

0x01 graphic

Addycji
Substytucji (z H)

Kwasy karboksylowe

0x01 graphic

Substytucji (z H); Substytucji (z OH)
Substytucji (z H); Addycji (na C=O)

Oto wybrane przykłady mechanizmów reakcji związków organicznych

Mechanizm rodnikowy

0x01 graphic

Substytucja

0x01 graphic

Addycja

0x01 graphic

Eliminacji

0x01 graphic



Wyszukiwarka

Podobne podstrony:
alkany, korepetycje, chemia, organiczna
Alkany nie reag, CHEMIA, Chemia organiczna
alkany, chemia organiczna
1 Chemia organiczna wprowadzenie alkanyid 9109 pptx
Chemia organiczna czesc I poprawiona
chemia organiczna wykład 6
Wykład 9 CHEMIA ORGANICZNA
Chemia Organiczna 4
Chemia organiczna IV
CHEMIA- CHEMIA ORGANICZNA, CHEMIA
bromoacetanilid, Studia, Sprawozdania, Chemia organiczna

więcej podobnych podstron