Diody półprzewodnikowe
Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu.
Symbole graficzne diody, półprzewodnikowej (a) i próżniowej (b) oraz charakterystyka diody (c)
Dzięki takiej charakterystyce diody można stosować w wielu układach jako element , który łatwo przepuszcza prąd w jednym kierunku i prawie nie przepuszcza go w kierunku przeciwnym.
Rozróżnia się diody półprzewodnikowe pracujące na zasadzie wykorzystania właściwości złącza p-n powstałego z połączenia półprzewodnika typu n i typu p.
Złącza p-n
Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n.
Koncentracja elektronów swobodnych w obszarze n jest znacznie, większa niż w obszarze p, w którym stanowią one nośnik mniejszościowe. Podobnie w obszarze n następuje większa koncentracja dziur. Wskutek różnicy koncentracji ładunków następuje dyfuzja nośników większościowych: elektronów z obszaru n do p i dziur z obszaru p do n.
W wyniku procesu dyfuzji w warstwie granicznej po stronie obszaru n zanikają elektrony swobodne, a pozostaje niezrównoważone elektrycznie dodatnie jony donorów, tworząc dodatni ładunek przestrzenny. W analogiczny sposób powstaje ujemny ładunek przestrzenny po stronie obszaru p.
Na złączu powstaje pole elektryczne i bariera potencjału. Pole elektryczne przeciwdziała dyfuzji nośników większościowych, natomiast sprzyja przepływowi nośników mniejszościowych: elektronów swobodnych z obszaru p do n i dziur z obszaru n do p.
W warunkach równowagi dynamicznej złącza prądy te wzajemnie
się kompensuje.
|
|
Złącze p-n spolaryzowane w kierunku przewodzenia
|
Złącze p-n spolaryzowane w kierunku zaporowym
|
Gdy do złącza p-n doprowadzone zostanie z zewnątrz napięcie dodatnie: biegun źródła połączony z obszarem p, a ujemny biegun z obszarem n to bariera potencjału obniża się o wartość tego napięcia. Przez obszar przejściowy przepływa duży prąd dziurowy z p do n i prąd elektronowy z n do p. Ten sposób polaryzacji złącza nazywa się polaryzacją w kierunku przewodzenia (dobre przewodzenie prądu) co oznacza mała rezystancję wewnętrzna. W przypadku polaryzacji odwrotnej bariera potencjału zwiększa się o wartość tego napięcia na wejściu, co powoduje hamowanie przepływu nośników większościowych (tworzy się warstwa zaporowa). Ten sposób polaryzacji złącza nazywa się polaryzacja w kierunku zaporowym (przez złącze przypływa nieznaczny prąd wsteczny wywołany ruchem nośników mniejszościowych) co oznacza duża rezystancję wewnętrzna. Prąd wsteczny zależy od temperatury złącza, gdyż jego główna składowa jest prąd termiczny.
Rodzaje diod półprzewodnikowych
Rozróżnia się diody prostownicze, diody Zenera, diody tunelowe, fotodiody, diody luminescencyjne, pojemnościowe itp.
Diody prostownicze: Dioda prostownicza może być wytworzona w płytce monokryształu germanu lub krzemu w technologii dyfuzyjnej.
Z charakterystyki diody prostowniczej (dioda krzemowa) przy różnych temperaturach złącza wynika, że w stanie przewodzenia na diodzie występuje nieznaczny spadek napięcia rzędu 1 V, a w stanie zaporowym przez diodę przepływa nieznaczny prąd wsteczny silnie zależy od temperatury złącza. Przy przekroczeniu pewnej wartości napięcia wstecznego Umax prąd wsteczny szybko wzrasta, co może spowodować uszkodzenie diody. Dopuszczalna temperatura złącza p-n diod germanowych jest rzędu 90°C, a złącz krzemowych około 150°C. Diody prostownicze dużej mocy są zwykle zaopatrzone w radiatory, chłodzone wymuszonym obiegiem powietrza.
Diody Zenera: Diody Zenera są to specjalne diody krzemowe, w których wykorzystuje się zakrzywienie charakterystyki prądowo-napięciowej w obszarze przebicia.
Przebicie to nie jest niszczące, jeżeli nie zostanie przekroczona moc admisyjna diody. Przyczyną gwałtownego wzrostu prądu jest nadmierny wzrost natężenia pola elektrycznego w warstwie zaporowej wywołujący dwa zjawiska: jonizację zenera oraz jonizację lawinową.
W przypadku złączy wąskich powstających przy dużym domieszkowaniu już dla napięć kilku Voltów natężenie pola elektrycznego staje się tak duże, że następuje tzw. jonizacja zenera polegająca na przechodzeniu elektronów z pasma walencyjnego materiału p i przenoszeniu ich przez barierę do pasma przewodnictwa materiału n. Z kolei jonizacja lawinowa występująca w złączach szerokich, gdzie domieszkowanie jest niewielkie, jest spowodowana bombardowaniem atomów siatki krystalicznej przez rozpędzone elektrony powodujące lawinowy proces tworzenia się nowych nośników zwiększających szybko prąd wsteczny. Napięcia wsteczne UZ, przy którym następuje gwałtowne zakrzywienie charakterystyki zależy od rezystywności użytego krzemu (od kilku do kilkudziesięciu Voltów). Spadek napięcia na diodzie w obszarze przebicia zwanym napięciem stabilizacji, prawie nie zależy od prądu przepływającego przez diodę a jedynie od rezystancji dynamicznej rZ, wyrażającej stosunek przyrostu napięcia stabilizacji ΔUS do przyrostu prądu ΔIS: rZ= ΔUS/ΔIS. W rzeczywistości rZ diody Zenera w zakresie stabilizacji jest bardzo mała i dlatego przejmuje się, że napięcie stabilizacji jest równe wartości napięcia Zenera UZ.
Maksymalna wartość prądu Ismax, przy której dioda Zenera może pracować bez uszkodzeń, jest ograniczona jej mocą dopuszczalną Pmax zgodnie z zależnością:
Ismax = Pmax / Uz.
Diody Zenera znajdują szerokie zastosowanie w układach stabilizacyjnych, ograniczających napięcie, jako wysoko stabilne źródła napięć wzorcowych itp.
Diody tunelowe: Dioda tunelowa jest to dioda półprzewodnikowa, w której dzięki zastosowaniu bardzo dużej koncentracji domieszek powstaje bardzo wąska bariera pozwalająca na wstąpienie tzw. przejścia tunelowego.
Symbol graficzny diody tunelowej (a) i jej charakterystyka (b)
W charakterystyce napięciowo-prądowej diody tunelowej występuje gałąź odpowiadająca ujemnej rezystancji dynamicznej (spowodowana wzrostem napięcia i ujemnym przyrostem prądu). Przejścia elektronów przez barierę występuje zarówno przy polaryzacji wstecznej jak i przy małych napięciach polaryzacji w kierunku przewodzenia, przy której występuje maksimum prądu. Dalsze zwiększenie napięcia powoduje iż przechodzenie elektronów przez barierę zanika (małe pola elektryczne). Nazwa "tunelowy" wynika z dokładniejszej interpretacji złożonych zjawisk w złączu, która zakłada, że elektrony nie mogąc przejść w normalny sposób ponad bariera potencjału przechodzi pod barier, tzn. tunelem. Diody tunelowe są stosowane w układach wzmacniających bardzo wysokie częstotliwości.
Charakterystyka napięciowo-prądowa diody tunelowej
Fotodiody: Fotodiodę stanowi złącze p-n, w którym wykorzystuje się zjawisko generowania mniejszościowych nośników ładunku pod wpływem energii świetlnej. Fotodioda jest spolaryzowana napięciem stałym w kierunku zaporowym i oświetlona przez specjalne okienko w obudowie, wykonane w postaci soczewki. Przez fotodiody w stanie nieoświetlonym przypływa nieznaczny prąd wsteczny zwanym prądem ciemnym powstały wskutek istnienia w złączu nośników mniejszościowych, generowanych termicznie. oświetlenie fotodiody zarówno w złączu jak i na granicy między obszarami p i n powoduje wzrost liczby nośników mniejszościowych, a zatem - wzrost prądu w obwodzie (kwanty energii świetlnej generują w złączu p-n pary: elektron-dziura).
Fotodioda: a) schemat układu pracy, b) symbol graficzny, c) widok zewnętrzny
|
|
Charakterystyki napięciowo-prądowe fotodiody germanowej |
Charakterystyki widmowe fotodiody germanowej (Ce) i krzemowej (Si) |
Fotodiody wykonywane są najczęściej z germanu lub krzemu. Zaletą germanu jest większy prąd fotoelektryczny, a zaletą krzemu mniejszy prąd ciemny. Czułość fotodiody jest największa dla promieniowania o długości 1.5 μm dla germanu i 0,7 μm dla krzemu.
Diody luminescencyine (elektrotuminescencyine) LED:
Zjawisko elektroluminescencji w diodach półprzewodnikowych polega na wytwarzaniu światła pod wpływem pola elektrycznego w wyniku rekombinacji dziur i elektronów w spolaryzowanym złączu p-n (wprowadzanie dużej liczby nośników mniejszościowych przez złącze spolaryzowane w kierunku przewodzenia do obszaru, w którym mogą one łatwo rekombinować z nośnikami większościowymi). Przechodzenie elektronów z wyższego poziomu energetycznego na niższy powoduje wydzielanie energii w postaci światła.
Dioda luminescencyjna: a) budowa, b) symbol graficzny, c) charakterystyka napięciowo-prądowa, d) zależność mocy promienistej od prądu
Istnieją diody elektroluminescencyjne próżniowe, gazowane i półprzewodnikowe. Ostatnie najczęściej stosowane np. arsenku galu GaAs, którego częstotliwość promieniowania leży w paśmie podczerwieni. Przez odpowiednie dozowanie domieszek fosforu można przesunąć częstotliwość promieniowania do pasma widzialnego.
W zależności od materiału, z którego wykonano diodę, otrzymuje się diody święcące czerwono, zielono itp. Diody ty stosuje się m.in. w kalkulatorach, zegarkach, przyrządach pomiarowych, jako wskaźniki poziomu sygnału ze względu na ich duża wydajność i trwałość.
Diody pojemnościowe (warikapy): Struktura złącza p-n diody pojemnościowej przypomina kondensator płaski. Okładkami tego kondensatora są obszary p i n o małej rezystywności, a dielektrykiem-warstwa zaporowa. Szerokość warstwy zaporowej (pojemność złącza), można zmieniać przez zmianę napięcia zewnętrznego polaryzującego złącza w kierunku zaporowym. Jeżeli napięcie zaporowe wzrośnie, to obszar dielektryczny złącza ulegnie rozszerzeniu, a pojemność złącza maleje jak w kondensatorze przy rozsuwaniu jego okładek.
Przy napięciu U = 0 pojemność warikapu jest największa, a przy wzroście napięcia polaryzacji zaporowej - maleje. Warikapy wykonuje się jako diody krzemowe stosowane do automatycznego dostrajania obwodów rezonansowych, w układach wzmacniających.
Nośniki miejszościowe
Nośniki większościowe
Obszar zubożony
Kierunek przewodzenia
Kierunek zaporowy