Zastosowanie laserów, Fizyka


--Zastosowanie laserów --


Początkowo lasery zamierzano wykorzystać w celach wojskowych jak podają różne źródła (niepotwierdzone)pierwsze wykorzystanie laserów na polu walki miało miejsce już pod koniec lat 60 ubiegłego wieku. Laser został pomyślnie wykorzystany w konflikcie granicznym ZSSR z Chinami. W miarę wzrostu zapotrzebowania na nowe technologie lasery znajdują zastosowanie w każdej gałęzi przemysłu i usług. Najbardziej popularne jest wykorzystanie ich w przemyśle.

0x01 graphic

0x01 graphic

Zastosowanie lasrów w przemyśle

Pomiar odległości

Do określenia poziomu skażenie atmosfery

Dźwięk i dane na CD

Światłowody

Zastosowanie laserów w wojsku

Zastosowanie laserów w medycynie



1) Zastosowanie laserów w przemyśle

Laserowa obróbka materiałów :

0x01 graphic


2) Pomiar odległości
Geodeci używają przyrządów zwanych dalmierzami laserowymi do bardzo dokładnych pomiarów odległości - od kilku metrów do około 3 km. Wiązka dalmierza laserowego jest kierowana na odbijający cel. A gdy natrafi na lustro, zostaje obita z powrotem do niego. Instrument rejestruje czas, który upłynął od wysłania impulsu świetlnego do jego odbioru, i oblicza z niego odległość do celu.

0x01 graphic



3) Do określenia poziomu skażenie atmosfery
Analizując pochłanianie światła o różnych długościach fali przez chemikalia zawarte w powietrzu, można mierzyć skażenie atmosfery. Niektóre związki chemiczne, pobudzone energia lasera, emitują charakterystyczne dla siebie światło. Zjawisko to nosi nazwę fluorescencji. Posługując się podniebnym laserem o odpowiedniej długości fali świetlnej i rejestrując wywołaną przez niego fluorescencję, naukowcy mogą badać tak różne zjawiska, jak stan zdrowia lasów czy rozmiary plamy ropy naftowej na morzu.

0x01 graphic


System LIDAR umożliwia zdalne pomiary wielu parametrów powietrza atmosferycznego, m. in.


Rozwój technik lidarowych, przypadający na przełom lat 60 i 70 sprawił, iż obecnie stanowią one jedną z podstawowych metod badania atmosfery. Pomiary polegające na wysłaniu wiązki świetlnej w atmosferę i analizie jej echa optycznego, popularność swą zawdzięczają dzięki łatwości i szybkości wykonania, bowiem unika się kłopotów związanych z pobraniem i transportem próbki powietrza przeznaczonego do analizy.

4) Dźwięk i dane na CD
jest przechowywany w formie danych cyfrowych, czyli serii zer i jedynek. Cyfrowy zapis dźwięku nie tylko ułatwia jego bardzo dokładne odtwarzanie, ale także umożliwia dokonywanie w nim zmian za pomocą komputera w celu jego ulepszania oraz wstawiania specjalnych efektów dźwiękowych. Indeksowanie informacji cyfrowych jest łatwe, zatem specjaliści od dźwięku mogą z łatwością odnaleźć dokładnie ten fragment, który ma być przetworzony, a słuchacz w domu może odszukać ścieżkę, której chce słuchać. Zapis dźwięku i danych na CD składa się z ciągu zagłębień - wycinanych za pomocą małego lasera półprzewodnikowego w warstwie metalu pokrywającej plastykowy dysk. Płyta wiruje w napędzie z dużą szybkością, a wiązka światła laserowego jest skupiona na jej płaszczyźnie. Gdy wiązka trafi na zagłębienie zostaje rozproszona, a gdy płaska powierzchnia odbije ją do detektora, wytwarza impuls. Z impulsów tych składa się kod zarejestrowanych danych lub dźwięku. Układ elektroniczny odtwarzacza zamienia ten kod na prąd sygnału elektrycznego, który zostaje przekształcony w dane lub dźwięki.

0x01 graphic



5) Światłowody
W miarę jak coraz więcej ludzi używa Internetu, telefonu i faksu, rośnie zapotrzebowanie na łącza telekomunikacyjne. I w tej dziedzinie lasery są pomocne. Kable światłowodowe, przewodzące sygnały w formie impulsów świetlnych o różnej intensywności, przenoszą wielokrotnie więcej informacji, niż tradycyjne miedziane kable telefoniczne. W światłowodowych sieciach telekomunikacyjnych pojedyncze włókno może równocześnie przesyłać tysiące rozmów telefonicznych.

6) Zastosowanie laserów w wojsku
ogólne informacje na ten temat :"Zastosowanie laserów w uzbrojeniu"
kliknij tutaj

7) Zastosowanie laserów w medycynie

W medycynie stosuje się lasery:


Lasery wysokoenergetyczne służą do destrukcji bądź usuwania tkanek. Mają średnią lub dużą moc, bądź są to lasery impulsowe.
W okulistyce lasery są wykorzystywane do przecinania cyst powiek lub spojówek, przecinania naczyń wrastających w rogówkę, perforacji cyst tęczówki, przecinania zrostów tęczówkowo - rogówkowych, do zabiegów przeciwjaskrowych i przeciwzaćmowych, do korekcji wad wzroku (astygmatyzmu, krótkowzroczności i dalekowzroczności) i do witreotomii. Szczególnym wskazaniem do laserowej korekcji wady refrakcji jest duża wada wzroku tylko w jednym oku. Najnowszą metodą korekcji wady refrakcji lub astygmatyzmu jest LASIK (Laser Assised In Situ Keratomileusis). Polega ona na użyciu lasera ekscimerowego, który działając z dokładnością do 0,25 mikrometra odparowuje nierówności w głębszych warstwach rogówki. Metoda ta koryguje wadę refrakcji w zakresie od +6 do -13 dioptrii.
Dermatolodzy za pomocą laserów usuwają naczyniaki oraz niektóre nowotwory (np. raka podstawnokomórkowego).
W laryngologii laserem leczy się nowotwory krtani oraz wykonuje rekonstrukcję kosteczek słuchowych.
W pulmonologii lasery są stosowane do rekanalizacji dróg oddechowych, usuwania ciał obcych i źródeł krwawienia, fotokoagulacji receptorów kaszlu.
W chirurgii lasery służą do udrażniania przełyku w chorobach nowotworowych, hamowania krwawienia z górnego odcinka przewodu pokarmowego, leczenia łagodnych nowotworów jelita grubego.
W ginekologii lasery są stosowane w laparoskopii do uwalniania zrostów wewnątrzmacicznych i w miednicy, w leczeniu endometriozy, mięśniaków, łagodnych torbieli przydatków, wodniaków jajowodów.
W urologii są stosowane do kruszenia złogów w moczowodach, leczenia łagodnego przerostu prostaty.
W neurochirurgii są wykorzystywane do usuwania oponiaków, glejaków i nerwiaków.
W chirurgii naczyniowej za pomocą laserów wykonywana jest przezskórna angioplastyka.
Lasery niskoenergetyczne działają biostymulująco poprzez wpływ na metabolizm komórek.
Jest to wykorzystywane w leczeniu ran, oparzeń, odleżyn oraz bólów stawowych.

0x01 graphic


Lasery mogą zastępować skalpele w sali operacyjnej i ułatwiają bezpieczniejsze, szybsze i skuteczniejsze wykonywanie niektórych delikatnych zabiegów. Otwierają też drogę do bezbolesnych wizyt w gabinecie dentysty. W tradycyjnej chirurgii wszystkich cięć dokonuje się za pomocą skalpela. Ale cięcia wykonane skalpelem krwawią, a w niektórych częściach ciała operowanie skalpelem jest utrudnione. Teraz chirurdzy dostali do rąk nowe narzędzie - skalpel laserowy. Bardzo skupiona wiązka tnie tkankę. Światło lasera zostaje doprowadzone do zakończenia skalpela za pośrednictwem światłowodu. W wielu bardzo delikatnych operacjach, jak w chirurgii mózgu, skalpele laserowe są używane do wykonywania cięć subtelniejszych od włosa ludzkiego. Skalpele laserowe ograniczają także krwawienia pooperacyjne, ponieważ ciepło, jaki wydzielają, zgrzewa przecinane naczynia krwionośne. Przy leczeniu ciężkich oparzeń, lekarz najpierw musi usunąć warstwę spalonej skóry i odsłonić zdrową powierzchnię, aby pozostała część skóry mogła się zagoić. Za pomocą skalpela laserowego można szybko i stosunkowo mało boleśnie zdejmować naskórek. Skalpel laserowy może także służyć do usuwania tatuaży przez zdejmowanie bardzo cienkich warstw skóry. Natężenie wiązki laserowej skalpela może być dostosowane do potrzeb. Przy małej mocy służy do spajania rozerwanych tkanek lub krwawiących naczyń krwionośnych. Przy dużej mocy może przebijać lub unicestwiać tkanki. Wiązka dużej mocy jest użyteczna do oczyszczania zablokowanych arterii lub niszczenia chorych tkanek.

0x01 graphic

Skalpel laserowy

ODDZIAŁYWANIE PROMIENIOWANIA LASEROWEGO NA TKANKI

  1. Efekt fototermiczny - po absorpcji promieniowania przez tkankę dochodzi do jej nagrzania, denaturacji i odparowania. Efekt ten zależy od ilości dostarczonej energii, czasu promieniowania oraz rodzaju tkanki.

  2. Efekt fotochemiczny - wysyłanie krótkich impulsów o dużej gęstości mocy powoduje rozrywanie wiązań chemicznych bez nagrzewania tkanek, tzn. w miejscu oddziaływania promieniowania dochodzi do rozkładu i usunięcia tkanki, ale bez termicznego uszkodzenia tkanek sąsiednich.

  3. Efekt fotojonizujący - współistnieje z efektem fotochemicznym. Na skutek wysyłania krótkich impulsów o dużej gęstości mocy dochodzi do jonizacji cząsteczek w tkance. Powstaje plazma, która silnie absorbuje promieniowanie - dochodzi do ekspansji plazmy, co wywołuje powstanie uderzeniowej fali akustycznej. Destrukcja tkanki ma charakter eksplozji.

  4. Efekt biostymulacji - jest to efekt działania promieniowania o małej mocy. Zostaje stymulowany transport elektronów w łańcuchu oddechowym oraz dochodzi do kumulacji ATP.


Historia laserów w medycynie:



Wyszukiwarka