e-Fizyka - internetowy wykład z podstaw fizyki
(prof. Zbigniew Kąkol, dr Jan Żukrowski)
Cząstki i fale - podstawy mechaniki kwantowej
32. Światło a fizyka kwantowa
32.1 Promieniowanie termiczne
Z codziennego doświadczenia wiemy, że rozgrzane do wysokiej temperatury ciała są źródłami światła widzialnego. Typowym przykładem są wolframowe włókna żarówek.
Promieniowanie wysyłane przez ogrzane ciała nazywamy promieniowaniem termicznym
. Wszystkie ciała emitują takie promieniowanie do otoczenia, a także z tego otoczenia je absorbują w każdej temperaturze wyższej od zera bezwzględnego. Jeżeli ciało ma wyższą temperaturę od otoczenia to będzie się oziębiać ponieważ szybkość promieniowania przewyższa szybkość absorpcji (oba procesy zawsze występują jednocześnie). Gdy osiągnięta zostanie równowaga termodynamiczna wtedy te szybkości będą równe.
Za pomocą siatki dyfrakcyjnej możemy zbadać światło emitowane przez te źródła tzn. dowiedzieć się jakie są długości fal wypromieniowywanych przez ciało i jakie jest ich natężenie Wyniki takiej analizy dla taśmy wolframowej ogrzanej do T = 2000 K. sa pokazane na rysunku 32.1.
Rys. 32.1. Zdolność emisyjna wolframu i ciała doskonale czarnego
Wielkość Rλ przedstawiona na osi pionowej nazywana jest widmową zdolnością emisyjną
promieniowania i jest tak zdefiniowana, że wielkość Rλdλ oznacza moc promieniowania czyli szybkość, z jaką jednostkowy obszar powierzchni wypromieniowuje energię odpowiadającą długościom fal zawartym w przedziale od λ, do λ+dλ.
Całkowitą energię wysyłanego promieniowania w całym zakresie długości fal możemy obliczyć sumując emisję dla wszystkich długości fal tzn. całkując Rλ po wszystkich długościach fal. Wielkość ta nazywana jest całkowitą emisją energetyczną
promieniowania R i wyraża się wzorem
|
(32.1) |
Oznacza to, że możemy interpretować emisję energetyczną promieniowania R jako powierzchnię pod wykresem Rλ od λ.
Widmo emitowane przez ciało stałe ma charakter ciągły i silnie zależy od temperatury. Ponadto szczegóły tego widma są prawie niezależne od rodzaju substancji.
Zauważmy, że w "zwykłych" temperaturach większość ciał jest dla nas widoczna dlatego, że odbijają one (lub rozpraszają) światło, które na nie pada, a nie dlatego, że ciała te wysyłają promieniowanie widzialne (świecą). Jeżeli nie pada na nie światło (np. w nocy) to są one niewidoczne. Dopiero gdy ciała mają wysoką temperaturę wtedy świecą własnym światłem. Ale jak widać z rysunku 32.1 i tak większość emitowanego promieniowania jest niewidzialna bo przypada na zakres podczerwieni czyli promieniowania cieplnego. Dlatego ciała, świecące własnym światłem są bardzo gorące. Jeżeli będziemy rozgrzewać kawałek metalu to początkowo chociaż jest on gorący to z jego wyglądu nie można tego stwierdzić bo nie świeci; można to tylko zrobić dotykiem. Emituje promieniowanie podczerwone. Ze wzrostem temperatury kawałek metalu staje się początkowo ciemno-czerwony, następnie jasno-czerwony, aż wreszcie świeci światłem niebiesko-białym.
Ponieważ ilościowe interpretacje takich widm promieniowania są trudne to posługujemy się wyidealizowanym ciałem stałym, zwanym ciałem doskonale czarnym
. (Tak postępowaliśmy już w przypadku gazów; rozważaliśmy modelowy obiekt tzw. gaz doskonały.) Ciało doskonale czarne charakteryzuje się tym, że pochłania całkowicie padające nań promieniowanie.
33.2 Widma atomowe
Na rysunku 33.1 pokazany jest typowy układ do pomiaru widm atomowych. Źródłem promieniowania jest jednoatomowy gaz pobudzony do świecenia metodą wyładowania elektrycznego (tak jak w jarzeniówce).
Promieniowanie przechodzi przez szczelinę kolimującą, a następnie pada na pryzmat (lub siatkę dyfrakcyjną), który rozszczepia promieniowanie na składowe o różnych długościach fal.
Rys. 33.1. Układ do obserwacji emisyjnych widm atomowych
Na rysunku 32.2 porównane jest światło jakie wysyłają rozgrzane ciała (a) np. słońce, żarówka z widzialną częścią widma atomu wodoru (b).
Rys. 33.2. widmo ciągłe światła (a), widmo liniowe atomu wodoru (b)
Na rysunku 33.2 uwidacznia się cecha szczególna obserwowanych widm. W przeciwieństwie do widma ciągłego emitowanego np. przez powierzchnie ciał ogrzanych do wysokich temperatur, widma promieniowania pierwiastków w postaci gazów i par, pobudzonych do świecenia np. za pomocą wyładowania elektrycznego, są złożone z jasnych, ostrych linii, odpowiadających ściśle określonym długościom fal.
Promieniowanie wysyłane przez swobodne atomy (tzw. widmo emisyjne
) zawiera tylko pewną liczbę długości fal. Takie widmo nazywamy widmem liniowym
, a każdą z takich składowych długości fal nazywana jest linią widmową.
Obok widm emisyjnych badano również widma absorpcyjne
, tym razem obserwując promieniowanie pochłaniane przez gazy zamiast emitowanego.
Okazało się, że jeżeli światło o widmie ciągłym, np. światło żarówki, przechodzi przez gaz lub parę, to w widmie ciągłym wysyłanym przez żarówkę widoczne są ciemne linie, promieniowanie o pewnych długościach fal zostało pochłonięte przez gaz (zaabsorbowane). Długości tych fal dokładnie odpowiadają długościom fal widma emisyjnego danego pierwiastka.
Doświadczenia pokazują więc, że pojedyncze atomy (cząsteczki) zarówno emitują jak i absorbują promieniowanie o ściśle określonych długościach fali.
To właśnie badanie widma wodoru doprowadziło Bohra do sformułowania nowego modelu atomu. Model ten chociaż posiada pewne braki to ilustruje idę kwantowania w sposób prosty matematycznie.
Teoria sformułowana przez Bohra pozwoliła na wyjaśnienie własności widma atomu wodoru, a przede wszystkim stabilnej struktury atomu. Jednak nie podawała uzasadnienia postulatów, na których się opierała, zwłaszcza reguły kwantowania momentu pędu.
Taką fizyczną interpretację reguł kwantowania Bohra zaproponował de Broglie przyjmując, że elektron krążący wokół jądra po orbicie kołowej ze stałą prędkością jest reprezentowany przez pewną falę materii - falę elektronową Ta fala, tak jak elektron, przebiega wielokrotnie wzdłuż orbity kołowej, przy czym w każdym kolejnym okresie przebieg ulega dokładnemu powtórzeniu, to znaczy fala jest zgodna w fazie z falami z poprzednich obiegów. W przeciwnym razie powstająca fala wypadkowa miała by natężenie równe zeru. Ten warunek zgodności faz oznacza, że orbita musi na swym obwodzie mieścić całkowitą liczbę długości fal de Broglie'a
(34.4)
(34.5)
Stąd moment pędu elektronu
(34.6)
Otrzymaliśmy warunek Bohra kwantyzacji momentu pędu, który jest teraz konsekwencją przyjęcia założenia, że elektron jest reprezentowany przez odpowiednią falę materii. Na rysunku 34.2 przedstawione są fale materii związaną z elektronem poruszającym się po orbicie o promieniu r. Długość fali de Broglie'a została dobrana tak, aby orbita o promieniu r zawierała całkowitą liczbę n fal materii.
Rys. 33.3. Ilustracja związanych z elektronem fal materii na orbitach Bohra Przedstawiony powyżej obraz sugeruje powstawanie stojących fal materii. Mamy do czynienia z sytuacją, w której ruch fal jest ograniczony przez nałożenie pewnych warunków fizycznych (34.3), analogicznie jak dla drgań struny zamocowanej na obu końcach. Przypomnijmy sobie, że mamy wtedy do czynienia z falę stojącą (a nie bieżącą), a co ważniejsze w strunie mogą występować tylko pewne długości fal. Mamy więc do czynienia z kwantyzacją długości fal wynikającą z ograniczeń nałożonych na falę. Co więcej fale stojące nie przenoszą energii (nie może ona płynąc przez węzły, jest na stałe zmagazynowana w poszczególnych punktach przestrzeni), elektron krążący po orbicie nie emituje promieniowania elektromagnetycznego, jest w stanie stacjonarnym. Postulat de Broglie'a wiążący elektron ze stojąca falą materii przyniósł zadawalające uzasadnienie reguł kwantowania Bohra i stworzył fundament współczesnej teorii opisu stanów atomowych.
Sam jednak nie był wystarczający, bo miedzy innymi nie dawał informacji o sposobie rozchodzenia się fal materii. Nie odpowiadał na pytanie jaką postać może mieć funkcja opisująca fale materii - funkcja falowa Problem ten został wyjaśniony przez Heisenberga i Schrödingera, którzy zaproponowali nowy sposób opisu świata mikrocząstek - mechanikę kwantową.
|
Równanie Schrödingera Znajomość ścisłej postaci funkcji falowej jest niezbędna do określenia ruchu cząstek w konkretnych przypadkach (zjawiskach fizycznych). Przykładem może być funkcja falowa ψ, opisująca ruch cząstki swobodnej, która została przedstawiona w paragrafie 35.1. Taką ścisłą postać funkcji falowej dla dowolnego układu można znaleźć rozwiązując równanie Schrödingera. Jest to równanie różniczkowe opisujące zachowanie się układu kwantowego w czasie i przestrzeni, które w szczególności przyjmuje postać
(35.4)
gdzie E jest energią całkowitą cząstki, U(x) jej energią potencjalną zależną od jej położenia, a Zależność (35.4) przedstawia najprostszą formę równania Schrödingera to jest równanie w jednym wymiarze i niezależne od czasu. Rozwiązanie równania Schrödingera polega na znalezieniu postaci funkcji falowej ψ i wartości energii cząstki E przy znanej działającej na cząstkę sile zadanej poprzez energię potencjalną U. Kwantowomechaniczny opis atomu wodoru Omówimy teraz zastosowanie teorii Schrödingera do atomu wodoru. Ten przypadek ma szczególne znaczenie, gdyż był to pierwszy układ, do którego Schrödinger zastosował swoją teorię kwantową i który stanowił pierwszą jej weryfikację. Ponieważ atom wodoru jest układem trójwymiarowym równanie Schrödingera dla atomu wodoru ma bardziej skomplikowaną postać niż podane wcześniej równanie (35.4)
(35.5)
gdzie ψ = ψ(x,y,z). Zgodnie z równaniem (19.4) energia potencjalna dwóch ładunków punktowych (elektronu i protonu) znajdujących się w odległości r jest dana wyrażeniem
(35.6)
Równanie Schrödingera (35.5) rozwiązuje się zazwyczaj we współrzędnych sferycznych ze względu na to że energia potencjalna oddziaływania elektronu z jądrem (równanie 35.6) zapisana we współrzędnych sferycznych jest funkcją tylko jednej zmiennej (r) podczas gdy we współrzędnych prostokątnych funkcją wszystkich trzech współrzędnych (x,y,z). Na rysunku 35.1 pokazane są współrzędne prostokątne (x, y, z) i współrzędne sferyczne (r, θ, φ) punktu P.
Rys. 35.1. Związek pomiędzy współrzędnymi prostokątnymi (x, y, z)
Rozwiązanie równania Schrödingera w trzech wymiarach jest problem trudnym matematycznie między innymi ze względu na obliczenia w trzech wymiarach. Dlatego nie będziemy go rozwiązywać, a jedynie omówimy wybrane rozwiązania tego równania dla atomu wodoru. Funkcje falowe Okazuje się, że we współrzędnych sferycznych można funkcję falową przedstawić najogólniej jako iloczyn dwóch funkcji: funkcji radialnej R(r) zależnej tylko od promienia r oraz funkcji kątowej Υ(θ, φ) zależnej tylko od kątów. Rozwiązując równanie Schrödingera dla atomu wodoru stwierdzamy, że funkcja falowa elektronu zależy od trzech liczb całkowitych - liczb kwantowych n, l, ml.
(35.7)
Przypomnijmy, że w dotychczas prezentowanych modelach atomu wodoru, zarówno energia elektronu jak i długość stojącej fali materii stowarzyszonej z elektronem zależały od jednej liczby kwantowej n. Tak jest w przypadku ruchu w jednym wymiarze. Jednak trójwymiarowa funkcja falowa zależy od trzech liczb kwantowych co wynika z faktu, że ruch cząstki w przestrzeni jest opisany przez trzy niezależne zmienne; na każdą współrzędną przestrzenną przypada jedna liczba kwantowa. Te trzy liczby kwantowe oznaczane n, l, ml spełniają następujące warunki:
(35.8)
Ze względu na rolę jaką odgrywa liczba n w określeniu energii całkowitej atomu, jest nazywana główną liczbą kwantową Równania Schrödingera ma poprawne fizycznie rozwiązania tylko dla liczb kwantowych spełniających warunki (35.8). Z tych warunków widać, że dla danej wartości n (danej energii) istnieje na ogół kilka różnych możliwych wartości l, ml. Zgodnie z interpretację Borna związek pomiędzy falą materii i związaną z nią cząstką wyraża się poprzez kwadrat modułu funkcji falowej IψI2, który wyraża gęstość prawdopodobieństwa znalezienia cząstki w danym punkcie przestrzeni
(35.9)
Na rysunku 35.2 pokazane są (dla kilku stanów kwantowych) wykresy radialnej gęstości prawdopodobieństwa, danej wyrażeniem
(35.10)
(Czynnik r2 w powyższym równaniu wynika stąd, że prawdopodobieństwo znalezienia elektronu w obszarze pomiędzy r i r+dr, w trzech wymiarach, jest proporcjonalne do elementarnej objętości r2dr.) Na osi x odłożona jest odległość elektronu od jądra r podzielona przez promień pierwszej orbity Bohra r1, natomiast na osi y przyjęto jednostki umowne.
Rys. 35.2. Radialna gęstość prawdopodobieństwa dla elektronu w atomie wodoru dla n = 1, 2, 3 Maksima gęstości prawdopodobieństwa, zaznaczone linią przerywaną, odpowiadają promieniom orbit w modelu Bohra dla n =1, 2, 3 (rn = r1n2).
Kątową gęstość prawdopodobieństwa IΥ(θ, φ)I2 też można przedstawić graficznie w postaci tak zwanych wykresów biegunowych Na rysunku 35.3 pokazane są wykresy biegunowe gęstości prawdopodobieństwa dla kilku stanów kwantowych atomu wodoru. Początek takiego wykresu umieszczamy w punkcie r = 0 (jądro), a kąt θ mierzymy od osi pionowej (z). Dla danej wartości kąta θ punkt wykresu leży w odległości (mierzonej pod kątem θ) równej I Υ(θ, φ)I2 od początku układu tak jak to zaznaczono na jednym z wykresów.
Rys. 35.3. Kątowa gęstość prawdopodobieństwa dla elektronu w atomie wodoru dla l = 0,1, 2 Obraz przestrzenny otrzymujemy przez obrót wykresów biegunowych wokół pionowej osi (układ jest symetryczny ze względu na kąt φ).
Kątowe rozkłady prawdopodobieństwa (takie jak na rysunku 35.3) noszą nazwę orbitali Orbitale można traktować jako rozkłady ładunku elektronu wokół jądra. Gdy mówimy, że jądro atomowe jest otoczone chmurą elektronową mamy właśnie na myśli orbitale. Energia elektronu Rozwiązanie równania Schrödingera dla atomu wodoru dostarcza oprócz funkcji falowych również wartości energii elektronu związanego w atomie. Te energie wyrażają się wzorem
(35.11)
Otrzymane wartości są identyczne z przewidywaniami modelu Bohra i wartościami obserwowalnymi doświadczalnie. Wynik ten stanowił pierwszą weryfikację teorii Schrödingera.
Teoria Schrödingera atomu jednoelektronowego ma ogromne znaczenie, bo podając obraz struktury atomu stworzyła podstawy kwantowego opisu wszystkich atomów wieloelektronowych, cząsteczek oraz jąder atomowych. Opis falowy mikroświata jest już dzisiaj dobrze ugruntowaną teorią, a rozwój technik eksperymentalnych takich jak np. skaningowy mikroskop tunelowy pozwala na prowadzenie badań w świecie atomów.
|
Podsumowanie
Emisja energetyczna promieniowania ciała doskonale czarnego zmienia się wraz z temperaturą według prawa Stefana-Boltzmanna
Planck wyjaśnił widmo emisyjne ciała doskonale czarnego zakładając, że atomy nie mogą mieć dowolnej energii, ale tylko ściśle określone wartości dane wzorem
Zgodnie z równaniem Einsteina dla zjawiska fotoelektrycznego
Cząstkową naturę światła można w pełni zaobserwować w doświadczeniu związanym z rozpraszaniem fal elektromagnetycznych na swobodnych elektronach, nazywanym zjawiskiem Comptona. Zmiana długości fali fotonu rozproszonego wynosi
Postulaty Bohra dotyczące atomu wodoru: 1) Elektron w atomie porusza się po orbicie kołowej pod wpływem przyciągania kulombowskiego pomiędzy elektronem i jądrem, 2) Elektron może poruszać się tylko po takich orbitach, dla których momemt pędu L jest równy całkowitej wielokrotności stałej Plancka podzielonej przez 2π, 3) Promieniowanie elektromagnetyczne zostaje tylko wysłane gdy elektron poruszający się po orbicie o całkowitej energii Ek zmienia swój ruch skokowo, tak że porusza się następnie po orbicie o energii Ej. Częstotliwość emitowanego promieniowania jest równa
W modelu Bohra kwantowanie promienia orbity jest opisane warunkiem
Długość fal materii de Broglie'a jest określona związkiem
Ruch elektronów w atomie może być opisany przez stojące fale materii.
Funkcję falową ψ przedstawiającą stan cząstki interpretujemy tak, że wielkość IψI2 w dowolnym punkcie przedstawia miarę prawdopodobieństwa, że cząstka znajdzie się w pobliżu tego punktu to znaczy w jakimś obszarze wokół tego punktu.
Zasada nieoznaczoności Heisenberga głosi, w zastosowaniu do pomiarów pędu i położenia, że iloczyn nieokreśloności pędu cząstki i nieokreśloności jej położenia w danym kierunku jest zawsze większy od stałej Plancka np.
Funkcje falowe ψ(x,y,z,t) cząstki i wartości jej energii E są rozwiązaniem równania Schrödingera, przy zadanej energii potencjalnej U.
Trójwymiarowa funkcja falowa zależy od trzech liczb kwantowych n, l, ml spełniających warunki
|
Test
Włókno wolframowe żarówki o mocy 60 W ma średnicę d = 0.3 mm i długość równą l = 10 cm. Oblicz temperaturę spirali, zakładając, że zdolność emisji spirali wolframowej wynosi e = 0.26 zdolności emisyjnej ciała doskonale czarnego.
Praca wyjścia dla litu wynosi W = 2.3 eV. Czy wystąpi efekt fotoelektryczny, gdy oświetlimy jego powierzchnię kolejno światłem o długości 500 nm i 650 nm ?
Światło żółte o długości λ = 589 nm jest rejestrowane przez oko ludzkie przy minimalnej mocy promieniowania padającego na siatkówkę P = 1.7·10-8 W. Jaka jest ilość fotonów padających na siatkówkę oka w ciągu jednej sekundy?
Jakie powinno być napięcie hamowania, jeśli praca wyjścia z metalu wynosi W = 2.3 eV, a oświetlany jest promieniowaniem o długości 400 nm ? Jaka jest maksymalna prędkość elektronów wybijanych z powierzchni tego metalu?
Fotony o długości fali λ = 0.005 nm zderzają się ze swobodnymi elektronami. Jaka jest długość fotonu rozproszonego odpowiednio pod kątem 30°, 90° i 180° ?
Gazowy wodór został wzbudzony do stanu n = 4. Jaką energię zaabsorbował atom? Ile linii zaobserwujemy w widmie emisyjnym tego gazu?
Jaka energia jest potrzebna do usunięcia poza atom wodoru elektronu znajdującego się w stanie n = 6 ?
Ile wynosi długość fali de Broglie'a tzw. neutronów termicznych w temperaturze 300 K ? Energia kinetyczna takiego neutronu jest równa 3kT/2, gdzie k jest stałą Boltzmanna.
Spróbuj pokazać, że jeżeli niepewność położenia cząstki jest równa długości jej fali de Broglie'a to niepewność jej prędkości jest równa tej prędkości.