Zadanie II-01
Wyraź wybrane jednostki pochodne za pomocą jednostek podstawowych: N, W, F, T.
Rozwiązanie:
Początek formularza
Niuton ( N)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Wat ( W)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Farad ( F)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Tesla ( T)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Dół formularza
Zadanie II-02
Wyraź wybrane jednostki pochodne za pomocą jednostek podstawowych: J, C, , Pa.
Rozwiązanie:
Początek formularza
Dżul ( J)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Kulomb ( C)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Om ( )
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Paskal ( Pa)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Dół formularza
Zadanie III-01
Samochód jedzie z miejscowości A do miejscowości B oddalonych o d1 = 10 km, a następnie wraca do miejscowości C oddalonej od A o d2 = 4 km. Oblicz drogę przebytą przez samochód oraz jego przemieszczenie. Załóż, ze wszystkie miejscowości leżą na jednej prostej. Zakładając, ze całkowity czas ruchu samochodu wynosi t = 20 min, oblicz średnią prędkość oraz szybkość ruchu tego samochodu.
Rozwiązanie:
Początek formularza
Całkowita droga wynosi:
1. -
-20 km
--
2. -
-14 km
--
3. -
-16 km
--
4. -
-4 km
--
Długość wektora przemieszczenia wynosi:
1. -
-20 km
--
2. -
-14 km
--
3. -
-16 km
--
4. -
-4 km
--
Średnia szybkość ruchu wynosi:
1. -
-60 km/h
--
2. -
-42 km/h
--
3. -
-48 km/h
--
4. -
-12 km/h
--
Długość wektora średniej prędkości wynosi:
1. -
-60 km/h
--
2. -
-42 km/h
--
3. -
-48 km/h
--
4. -
-12 km/h
--
Dół formularza
Zadanie III-02
Z jaką średnią szybkością poruszał się motocyklista, który przebył drogę z miasta A do miasta B w ciągu 4 godzin, oraz drogę powrotną w ciągu 5 godzin ? Odległość między miastami wynosi 200 km.
Rozwiązanie:
Początek formularza
Całkowita droga wynosi:
1. -
-0 km
--
2. -
-400 km
--
3. -
-200 km
--
4. -
-100 km
--
Całkowity czas ruchu wynosi:
1. -
-9 h
--
2. -
-10 h
--
3. -
-8 h
--
4. -
-1 h
--
Średnia szybkość ruchu wynosi:
1. -
-50 km/h
--
2. -
-40 km/h
--
3. -
-45 km/h
--
4. -
-44,4 km/h
--
co daje:
1. -
-12,3 m/s
--
2. -
-11,1 m/s
--
3. -
-12,5 m/s
--
4. -
-13 m/s
--
Dół formularza
Zadanie III-03
Łódź płynie z miejscowości A do B, tam i z powrotem, przez 3 godziny. Prędkość łodzi względem wody wynosi 6 m/s; stała prędkość nurtu rzeki wynosi 4 m/s. Oblicz średnią szybkość łodzi względem brzegów. Ile wynosi odległość od A do B ?
Rozwiązanie:
Początek formularza
Prędkość łodzi z prądem rzeki wynosi:
1. -
-6 m/s
--
2. -
-21,6 km/h
--
3. -
-10 m/s
--
4. -
-4 m/s
--
Prędkość łodzi pod prąd rzeki wynosi:
1. -
-2 m/s
--
2. -
-4 m/s
--
3. -
-14,4 m/s
--
4. -
-10 m/s
--
Odległość między miejscowościami A i B:
1. -
-10 km
--
2. -
-5 km
--
3. -
-18 km
--
4. -
-20 km
--
Średnia szybkość łodzi względem brzegów:
1. -
-6 m/s
--
2. -
-12 km/h
--
3. -
-5 km/h
--
4. -
-4 m/s
--
Dół formularza
Zadanie III-04
W tym samym momencie z lotniska w Krakowie wyleciały do Poznania helikopter i samolot. Helikopter leciał prosto do celu, natomiast samolot miał międzylądowanie w Warszawie. Ile czasu trwało to międzylądowanie, jeżeli obydwa pojazdy doleciały do Poznania w tym samym momencie? Przyjąć prędkość helikoptera VH = 250 km/h, a prędkość samolotu VS = 620 km/h. Droga przez Warszawę wynosi dW = 620 km, a trasa bezpośrednia ma długość d = 375 km.
Rozwiązanie:
Początek formularza
Czas lotu helikoptera:
1. -
-80 min
--
2. -
-1,5 h
--
3. -
-4000 s
--
4. -
-95 min
--
Czas lotu samolotu:
1. -
-60 min
--
2. -
-1,5 h
--
3. -
-4000 s
--
4. -
-30 min
--
Czas międzylądowania:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Co daje:
1. -
-20 min
--
2. -
-15 min
--
3. -
-30 min
--
4. -
-45 min
--
Dół formularza
Zadanie III-05
Turysta udaje się z miejscowości A do odległej o 30 km miejscowości B. Ma do wyboru dwa sposoby przebycia tej drogi. W pierwszym z nich przez połowę drogi jedzie rowerem, a następnie maszeruje piechotą. Drugi sposób polega na jeździe rowerem przez połowę czasu, a następnie marsz. Którym sposobem turysta szybciej dojdzie do celu? Jakie są średnie szybkości w obydwu przypadkach? Prędkości marszu i jazdy na rowerze wynoszą odpowiednio: VM = 6 km/h i VR = 24 km/h.
Rozwiązanie:
Początek formularza
Pierwszy sposób (równe drogi) Czas ruchu:
1. -
-3 h
--
2. -
-187,5 min
--
3. -
-135,5 min
--
4. -
-2,5 h
--
Średnia prędkość:
1. -
-9,6 km/h
--
2. -
-5,5 m/s
--
3. -
-15 km/h
--
4. -
-4 m/s
--
Drugi sposób (równe czasy): Czas ruchu:
1. -
-2 h
--
2. -
-90 min
--
3. -
-140 min
--
4. -
-2,5 h
--
Średnia prędkości:
1. -
-4 m/s
--
2. -
-20 km/h
--
3. -
-15 km/h
--
4. -
-5 m/s
--
Dół formularza
Zadanie III-06
Samochód jadący z prędkością V0 = 54 km/h zatrzymuje się po czasie t = 3 sekundy od chwili rozpoczęcia hamowania. Ile wynosi droga hamowania? Z jakim opóźnieniem poruszał się samochód?
Rozwiązanie:
Początek formularza
Prędkość końcowa samochodu wynosi:
1. -
-54 km/h
--
2. -
-0 km/h
--
3. -
-18 km/h
--
4. -
-27 km/h
--
Przyspieszenie ruchu samochodu:
1. -
--5 m/s2
--
2. -
-0 m/s2
--
3. -
-18 m/s2
--
4. -
--10 m/s2
--
Droga przebyta przez samochód wyraża się wzorem:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
i wynosi:
1. -
-12 m
--
2. -
-22,5 m
--
3. -
-15 m
--
4. -
-17,5 m
--
Dół formularza
Zadanie III-07
Ania rzuca piłką do góry i przed złapaniem jej trzy razy klaszcze w dłonie. Z jaką minimalną prędkością V0 musi wyrzucić piłkę, aby zdążyć ją złapać? Na jaką wysokość h dotrze piłka? Czas jednego klaśnięcia wynosi tK = 0,5 s. Oznaczenie: t - całkowity czas ruchu
Rozwiązanie:
Początek formularza
Czas wznoszenia się piłki wynosi:
1. -
-0,5 s
--
2. -
-1,5 s
--
3. -
-0,75 s
--
4. -
-1 s
--
Prędkość początkowa ruchu V0 =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Wysokość, na jaką dotrze piłka wyraża się wzorem h =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
i wynosi:
1. -
-2,8 m
--
2. -
-2,2 m
--
3. -
-3,2 m
--
4. -
-1,8 m
--
Dół formularza
Zadanie III-08
Wyrzucona przez chłopca piłka dociera na wysokość h1 = 8 metrów. Po jakim czasie t musi on rzucić drugą piłkę, aby zderzyły się one na wysokości h2 = 1 m? Obydwie piłki wyrzucane są z tą samą prędkością początkową V0 , skierowaną pionowo do góry.
Rozwiązanie:
Początek formularza
Prędkość wyrzutu piłki V0 =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Równanie ruchu piłki:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Powyższe równanie jest równaniem kwadratowym ze względu na czas i jego wyróżnik dla y = h2 wynosi:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Odstęp czasowy między rzutami t =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Dół formularza
Zadanie III-09
Jaką maksymalną wysokość hmax osiąga ciało, które rzucone pionowo do góry, po czasie t = 2 s znajduje się na wysokości h = 2 m? W jakiej fazie ruchu (wznoszenie, opadanie) znajduje się ciało po owych dwóch sekundach?
Rozwiązanie:
Początek formularza
Prędkość początkowa ciała V0 =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Czas wznoszenia tW =
1. -
-1,1 s
--
2. -
-0,8 s
--
3. -
-2,1 s
--
4. -
-2 s
--
Maksymalna wysokość wyraża się wzorem:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
i wynosi:
1. -
-3 m
--
2. -
-6 m
--
3. -
-4 m
--
4. -
-5 m
--
Dół formularza
Zadanie III-10
Po jakim czasie i pod jakim kątem ciało uderzy w podłoże, jeżeli rzucimy je z poziomą prędkością początkową V0 = 5 m/s, z wysokości h = 3 m?
Rozwiązanie:
Początek formularza
Czas spadania ciała:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Prędkość pionowa podczas upadku VY=
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Tangens kąta upadku:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Kąt upadku wynosi:
1. -
-48o
--
2. -
-30o
--
3. -
-56,9o
--
4. -
-62,1o
--
Dół formularza
Zadanie III-11
Jaką prędkość V0 należy nadać piłce golfowej, aby upadła w odległości d = 20 m od miejsca wybicia i osiągnęła maksymalną wysokość h = 5 m? Oblicz kąt początkowy tego rzutu.
Rozwiązanie:
Początek formularza
Korzystając ze wzorów na zasięg rzutu d =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
i maksymalną wysokość hmax =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
otrzymujemy tangens kąta wybicia:
1. -
-1
--
2. -
-
--
3. -
-
--
4. -
-
--
oraz prędkość początkową V0 =
1. -
-8 m/s
--
2. -
-14 m/s
--
3. -
-20 m/s
--
4. -
-18 m/s
--
Dół formularza
Zadanie III-12
Koło zamachowe o promieniu R = 20 cm rozpędza się ruchem jednostajnie przyspieszonym, z przyspieszeniem kątowym = 0,25 s-2. Po jakim czasie t, dla punktów na obwodzie koła, wartość przyspieszenia liniowego będzie równa przyspieszeniu dośrodkowemu? O jaki kąt koło zdąży się obrócić do tego czasu? Ile wynoszą powyższe przyspieszenia w tym momencie? Oblicz przyspieszenie wypadkowe a.
Rozwiązanie:
Początek formularza
Równość przyspieszenia liniowego i dośrodkowego wyraża wzór:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Czas, po którym nastąpi wyrównanie się przyspieszeń wynosi t =
1. -
-1 s
--
2. -
-2 s
--
3. -
-2,5 s
--
4. -
-4,2 s
--
Do tego czasu koło zdąży obrócić się o kąt =
1. -
-0,5 rad
--
2. -
-1,5 rad
--
3. -
-112o
--
4. -
-235o
--
W tym punkcie przyspieszenie wypadkowe wynosi a =
1. -
-2 m/s2
--
2. -
-0,07 m/s2
--
3. -
-4,2 m/s2
--
4. -
-9,81 m/s2
--
Dół formularza
Zadanie III-13
Ile czasu upływa pomiędzy dwoma kolejnymi momentami spotkań wskazówki minutowej z godzinową?
Rozwiązanie:
Początek formularza
Prędkość kątowa wyraża się wzorem =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Różnica kątów zakreślanych między spotkaniami wskazówek wynosi:
1. -
-
rad
--
2. -
-
rad
--
3. -
-
rad
--
4. -
-
rad
--
Czas miedzy spotkaniami wyraża wzór ( T1 = 1 h, T2 = 12 h ):
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
i wynosi około:
1. -
-3300 s
--
2. -
-73 min
--
3. -
-3927 s
--
4. -
-1,2 h
--
Dół formularza
Zadanie III-14
Z jaką prędkością V opada spadochroniarz, jeżeli siła oporu Fo jaka działa w tym ruchu jest proporcjonalna do prędkości, ze współczynnikiem równym = 200 kg/s. Całkowita masa skoczka wynosi m = 80kg.
Rozwiązanie:
Początek formularza
Ciężar spadochroniarza wynosi około:
1. -
-80 N
--
2. -
-160 N
--
3. -
-785 N
--
4. -
-850 N
--
Siła oporu powietrza wyraża się wzorem FO =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Równowagowa prędkość opadania wynosi V =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Co daje:
1. -
-3,9 m/s
--
2. -
-2,1 m/s
--
3. -
-4,5 m/s
--
4. -
-5 m/s
--
Dół formularza
Zadanie III-15
Jakie masy m1 i m2 należy zawiesić na linach, aby układ przedstawiony na rysunku pozostawał w spoczynku? Przyjąć: m3 = 10 kg, = 45o, = 30o.
Rozwiązanie:
Początek formularza
Równowaga sił w kierunku poziomym:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Równowaga sił w kierunku pionowym:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Masa m1 wynosi około:
1. -
-5 kg
--
2. -
-9,0 kg
--
3. -
-7,3 kg
--
4. -
-10 kg
--
Masa m2 wynosi około:
1. -
-5 kg
--
2. -
-9,0 kg
--
3. -
-7,3 kg
--
4. -
-10 kg
--
Dół formularza
Zadanie III-16
Chłopiec ciągnie sanki za sznur, który tworzy kąt = 30o z podłożem. Jaką siłą musi działać chłopiec na sanki, aby wciągnąć je na zbocze o kącie nachylenia = 15o?
Masa sanek wynosi m = 10 kg. Tarcie zaniedbać.
Rozwiązanie:
Początek formularza
Składowa siły ciężkości ściągająca sanki w dół zbocza Q1 =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Składowa siły naciągu sznurka wzdłuż zbocza F1 =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Z równowagi sił F =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
I wynosi około:
1. -
-29,3 N
--
2. -
-62,3 N
--
3. -
-48,2 N
--
4. -
-21,4 N
--
Dół formularza
Zadanie III-17
Jaką siłą F należy działać na masę m = 1 kg, aby w ciągu t = 1 s podnieść ją na wysokość h = 2m?
Rozwiązanie:
Początek formularza
Równanie ruchu ciała:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Przyspieszenie ruchu wyraża się wzorem a =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Siła F =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Co daje:
1. -
-13,8 N
--
2. -
-9,8 N
--
3. -
-11,2 N
--
4. -
-4,9 N
--
Dół formularza
Zadanie III-18
Ile czasu zajmuje zsuwanie się ciała z wysokości h = 1 m umieszczonego na równi pochyłej o kącie nachylenia = 30o ? Porównaj ten wynik z czasem swobodnego spadku z identycznej wysokości. Ciało zsuwa się bez tarcia.
Rozwiązanie:
Początek formularza
Równanie ruchu ciała przyjmuje postać:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Czas ruchu obliczamy z drogi i wynosi on t =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Czas swobodnego spadku wyraża się wzorem tS =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Stosunek czasu ruchu do czasu swobodnego spadku wynosi t/tS=
1. -
-1
--
2. -
-1,3
--
3. -
-2
--
4. -
-2,8
--
Dół formularza
Zadanie III-19
Porównaj siły hamowania samochodu, jeżeli zatrzymuje się on w czasie t = 3 s na suchej nawierzchni, a z kolei na oblodzonej jezdni droga hamowania wynosi s = 60 m. Prędkość początkowa samochodu w obu przypadkach wynosi V0 = 60 km/h.
Rozwiązanie:
Początek formularza
Opóźnienie samochodu na suchej nawierzchni obliczamy ze wzoru:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Opóźnienie samochodu na oblodzonej nawierzchni:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Stosunek siły hamowania na suchej nawierzchni do siły hamowania na nawierzchni oblodzonej wyraża się wzorem F1/F2=
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Co daje:
1. -
-2
--
2. -
-1,5
--
3. -
-2,4
--
4. -
-3,2
--
Dół formularza
Zadanie III-20
Ile wynosi siła wzajemnego oddziaływania między dwoma wagonami tramwaju o masach odpowiednio równych m1 = 10 ton i m2 = 8 ton, jeśli na pierwszy wagon działa siła F = 10 kN ? Oblicz, z jakim największym przyspieszeniem może poruszać się tramwaj, jeżeli wytrzymałość połączenia między wagonami wynosi Nmax = 40 kN.
Rozwiązanie:
Początek formularza
Równanie ruchu pierwszego wagonu:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Równanie ruchu drugiego wagonu:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Siła naciągu N =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Maksymalne przyspieszenie tramwaju amax =
1. -
-5 m/s2
--
2. -
-2 m/s2
--
3. -
-10 m/s2
--
4. -
-8 m/s2
--
Dół formularza
Zadanie III-21
Dwa ciała o masach m1 = 1 kg i m2 = 2 kg zwisają na linie z dwóch stron nieważkiego bloczka, który obraca się bez tarcia. Ile wynosi naciąg liny N? Jaka siła P przenosi się na zawieszenie osi bloczka?
Rozwiązanie:
Początek formularza
Równanie ruchu pierwszego ciała:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Równanie ruchu drugiego ciała:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Siła naciągu N =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Siła przenoszona przez bloczek P =
1. -
-19,3 N
--
2. -
-26,2 N
--
3. -
-29,4 N
--
4. -
-22,6 N
--
Zadanie III-22
Jak zmienia się przyspieszenie grawitacyjne, jeżeli przesuwamy się od środka Ziemi ku jej powierzchni? MZ , RZ - masa i promień Ziemi.
Rozwiązanie:
Początek formularza
Zależność przyspieszenia grawitacyjnego od odległości, dla sferycznego rozkładu masy M(r), wyraża wzór g( r) =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Masa M( r) zmienia się z odległością od środka Ziemi zgodnie ze wzorem M( r) =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Przyspieszenie grawitacyjne zmienia się według wzoru g( r) =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Co schematycznie ilustruje wykres g( r)
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Dół formularza
Dół formularza
Zadanie III-23
Wiedząc, że masa Księżyca jest 81 razy mniejsza od masy Ziemi, a przyspieszenie grawitacyjne na Księżycu jest 6 razy mniejsze niż na Ziemi, oblicz ile razy promień Księżyca jest mniejszy od promienia Ziemi. ( MZ = 81 MK , gZ = 6 gK)
Rozwiązanie:
Początek formularza
Przyspieszenie grawitacyjne na powierzchni Ziemi wynosi gZ =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Zatem gz/gk =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Stąd Rz/Rk =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Co daje:
1. -
-6,1
--
2. -
-21,2
--
3. -
-3,7
--
4. -
-18,5
--
Dół formularza
Zadanie III-24
Zakładając, że masa Księżyca jest 81 razy mniejsza niż masa Ziemi, oblicz, w jakiej odległości od środka Ziemi, w stosunku do odległości RZK środków Księżyca i Ziemi, znajduje się punkt "równowagi grawitacyjnej" na linii Ziemia-Księżyc.
Rozwiązanie:
Początek formularza
Siłę grawitacyjnego przyciągania Ziemi w punkcie odległym o R1 od jej środka, wyraża wzór:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
W tym samym punkcie, siła grawitacyjnego przyciągania Księżyca dana jest wyrażeniem:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Równowagę sił wyraża równość:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Której rozwiązaniem jest R1/RZK=
1. -
-0,95
--
2. -
-0,90
--
3. -
-0,78
--
4. -
-0,65
--
Dół formularza
Zadanie III-25
Ciało spoczywa na równi pochyłej o zmiennym kącie nachylenia . Oblicz kąt graniczny, tj. taki, powyżej którego ciało zaczyna się zsuwać. Współczynnik tarcia wynosi f = 0,577, a Q jest ciężarem ciała.
Rozwiązanie:
Początek formularza
Siła tarcia statycznego T spełnia zależność:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Równowaga sił dla kąta granicznego wyraża się wzorem:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Stąd:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Oraz kąt graniczny gr =
1. -
-15o
--
2. -
-30o
--
3. -
-60o
--
4. -
-45o
--
Dół formularza
Zadanie III-26
Chłopiec ciągnie pod górę sanki za sznurek skierowany pod kątem = 20o do stoku góry, który z kolei jest nachylony pod kątem =30o do poziomu. Ile wynosi siła z jaką chłopiec ciągnie sanki, jeżeli współczynnik tarcia wynosi f = 0,2, a masa sanek jest równa m = 10 kg? Przyjmij, że chłopiec porusza się ruchem jednostajnym.
Rozwiązanie:
Początek formularza
Równanie ruchu przyjmuje postać:
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-
--
Siła tarcia T =
1. -
-
--
2. -
-
--
3. -
-
--
4. -
-0
--
Siła F =
1.
2.
3.
4.
Co daje:
1.
58,2 N
2.
65,5 N
3.
82,1 N
4.
98,1 N
Dół formularza
Zadanie III-27
Z jakim przyspieszeniem porusza się ciało zsuwające się z równi pochyłej o kącie nachylenia = 45o, jeżeli współczynnik tarcia wynosi f = 0,4?
Rozwiązanie:
Początek formularza
Równanie ruchu ciała:
1.
2.
3.
4.
Siła tarcia T =
1.
2.
3.
4.
Przyspieszenie ciała a =
1.
2.
3.
4.
Co daje:
1.
9,81 m/s2
2.
4,16 m/s2
3.
2,43 m/s2
4.
3,51 m/s2
Dół formularza
Zadanie III-28
Ile razy zwiększy się czas spadania ciała w windzie, jeżeli ruszyła ona w dół z przyspieszeniem au = 0,5 g?
Rozwiązanie:
Początek formularza
Czas spadku ciała w windzie nieruchomej t0 =
1.
2.
3.
4.
Równanie ruchu ciała w windzie:
1.
2.
3.
4.
a=0
Czas spadku w windzie poruszającej się t =
1.
2.
3.
4.
Stosunek t/t0 =
1.
2
2.
3.
4.
Dół formularza
Zadanie III-29
Samochód o masie m = 1 tony jedzie z prędkością v = 60 km/h po moście w kształcie wypukłego łuku. Ile wynosi siła nacisku samochodu na jezdnię w środkowej części mostu, jeżeli promień krzywizny w tym miejscu wynosi R = 100 m?
Q - ciężar samochodu
Fod - siła odśrodkowa
Rozwiązanie:
Początek formularza
Siła nacisku samochodu na most N =
1.
2.
3.
4.
Siła odśrodkowa Fod =
1.
2.
3.
4.
Ostatecznie, siła nacisku N =
1.
2.
3.
4.
Co daje:
1.
9810 N
2.
7 kN
3.
8520 N
4.
3510 N
Dół formularza
Zadanie III-30
Z jaką maksymalną prędkością może samochód pokonać zakręt o promieniu krzywizny R = 20 m, jeżeli współczynnik tarcia wynosi f = 0,5 ?
Rozwiązanie:
Początek formularza
Aby samochód nie wypadł z trasy musi być spełniony warunek :
1.
2.
3.
4.
Siła odśrodkowa Fodśrod =
1.
2.
3.
4.
Maksymalna prędkość:
1.
2.
3.
4.
Co daje:
1.
9,9 m/s
2.
6,2 m/s
3.
18 km/h
4.
54 km/h
Dół formularza
Zadanie III-31
Z jakim przyspieszeniem toczy się (bez poślizgu) walec po równi pochyłej o kącie nachylenia = 30o ?
I - moment bezwładności walca względem osi 0
Rozwiązanie:
Początek formularza
Równanie ruchu postępowego:
1.
2.
3.
4.
Równanie ruchu obrotowego:
1.
2.
3.
4.
Przyspieszenie liniowe:
1.
2.
3.
4.
Co daje:
1.
3,27 m/s2
2.
1,18 m/s2
3.
2,52 m/s2
4.
5,08 m/s2
Dół formularza
Zadanie III-32
Ile wynosi siła tarcia podczas toczenia się ( bez poślizgu) walca o masie m = 1 kg po równi pochyłej o kącie nachylenia = 30o ?
Moment bezwładności walca:I = 0,5mR2,
współczynnik tarcia - f
Rozwiązanie:
Początek formularza
Równanie ruchu postępowego:
1.
2.
3.
4.
Równanie ruchu obrotowego:
1.
2.
3.
4.
Siła tarcia:
1.
2.
3.
4.
Co daje:
1.
1,6N
2.
0,8N
3.
brak danych
4.
2,1N
Zadanie III-33
Dla jakiego maksymalnego kąta walec będzie się toczył po równi pochyłej bez poślizgu ? Współczynnik tarcia wynosi:
, a moment bezwładności walca:
.
Rozwiązanie:
Początek formularza
Równanie ruchu postępowego:
1.
2.
3.
4.
Równanie ruchu obrotowego:
1.
2.
3.
4.
Siła tarcia statycznego musi spełniać warunek:
1.
2.
3.
4.
Kąt graniczny, powyżej którego występuje poślizg:
1.
45o
2.
30o
3.
60o
4.
55o
Dół formularza
vZadanie III-34
Z jakim przyspieszeniem liniowym toczy się z poślizgiem walec po równi pochyłej o kącie nachylenia =60o? Współczynnik tarcia wynosi f=0,1.
Rozwiązanie:
Początek formularza
Równanie ruchu postępowego:
1.
2.
3.
4.
Tarcie kinetyczne T=
1.
2.
3.
4.
Przyspieszenie a =
1.
2.
3.
4.
Co daje:
1.
8,5 m/s2
2.
9,8 m/s2
3.
4,9 m/s2
4.
8 m/s2
Dół formularza
vZadanie III-35
Z jakim przyspieszeniem kątowym toczy się z poślizgiem walec po równi pochyłej o kącie nachylenia = 60o?
Współczynnik tarcia wynosi f = 0,1 , a promień walca R = 5 cm. Moment bezwładności walca:
Rozwiązanie:
Początek formularza
Równanie ruchu obrotowego:
1.
2.
3.
4.
Tarcie kinetyczne T =
1.
2.
3.
4.
Przyspieszenie kątowe =
1.
2.
3.
4.
Co daje:
1.
9,81 1/s2
2.
12,4 1/s2
3.
19,6 1/s2
4.
25,1 1/s2
Dół formularza
Zadanie III-35
Z jakim przyspieszeniem kątowym toczy się z poślizgiem walec po równi pochyłej o kącie nachylenia = 60o?
Współczynnik tarcia wynosi f = 0,1 , a promień walca R = 5 cm. Moment bezwładności walca:
Rozwiązanie:
Początek formularza
Równanie ruchu obrotowego:
1.
2.
3.
4.
Tarcie kinetyczne T =
1.
2.
3.
4.
Przyspieszenie kątowe =
1.
2.
3.
4.
Co daje:
1.
9,81 1/s2
2.
12,4 1/s2
3.
19,6 1/s2
4.
25,1 1/s2
Dół formularza
Zadanie III-36
Przez bloczek o promieniu R = 10 cm i momencie bezwładności I = 0,01 kg m2 przerzucono sznurek, na końcach którego zawieszono masy m1 = 1 kg i m2 = 2 kg. Ile wynosi przyspieszenie układu, jeżeli sznurek nie ślizga się po bloczku? Ile wynoszą siły naciągu sznurka po obu stronach bloczka?
Rozwiązanie:
Początek formularza
Równanie ruchu masy m1:
1.
2.
3.
4.
Równanie ruchu masy m2:
1.
2.
3.
4.
Równanie ruchu bloczka:
1.
2.
3.
4.
Przyspieszenie a =
1.
2.
3.
4.
Dół formularza
Zadanie III-37
Przez bloczek o promieniu R = 10 cm i momencie bezwładności I = 0,01 kg m2 przerzucono sznurek, na końcach którego zawieszono masy m1 = 1 kg i m2 = 2 kg. Ile wynosi przyspieszenie układu, jeżeli sznurek nie ślizga się po bloczku? Ile wynosi siła naciągu sznurka na ciało o masie m1 ?
Rozwiązanie:
Początek formularza
Równania ruchu masy m1:
1.
2.
3.
4.
Równania ruchu masy m2:
1.
2.
3.
4.
Równanie ruchu bloczka:
1.
2.
3.
4.
Siła nacisku N1 =
1.
2.
3.
4.
Dół formularza
Zadanie III-38
Jednorodna belka o masie M = 100 kg i długości l = 4 m wisi poziomo na linach zaczepionych do jej końców. Ile wynoszą naciągi lin, jeżeli w odległości a = 1 m od końca belki doczepiono masę m = 40 kg ?
Rozwiązanie:
Początek formularza
Równowaga sił:
1.
2.
3.
4.
Równowaga momentów sił względem punktu O:
1.
2.
3.
4.
Siła napięcia N1 =
1.
2.
3.
4.
Siła napięcia N2 =
1.
2.
3.
4.
Dół formularza
Zadanie III-39
Drabina o masie m = 20 kg stoi oparta o gładką ścianę. Ile wynosi współczynnik tarcia drabiny o podłoże, jeżeli zaczyna się ona zsuwać przy kącie = 45o?
Rozwiązanie:
Początek formularza
Równowaga sił:
1.
2.
3.
4.
Równowaga momentów sił względem punktu O:
1.
2.
3.
4.
Współczynnik tarcia
=
1.
2.
3.
4.
Co daje:
1.
0,5
2.
1
3.
2
4.
0,3
Dół formularza
Zadanie III-40
Drabina o masie m = 20 kg stoi oparta o gładką ścianę pod kątem = 45o. Ile wynosi siła z jaką drabina działa na ścianę?
Rozwiązanie:
Początek formularza
Równowaga sił:
1.
2.
3.
4.
Równowaga momentów sił:
1.
2.
3.
4.
Siła reakcji ściany R =
1.
2.
3.
4.
Co daje:
1.
49 N
2.
55 N
3.
123 N
4.
98 N
Dół formularza
Zadanie III-41
Ciało o masie m = 50 kg podnosimy przy użyciu bloczka ruchomego. Jaką siłą należy ciągnąć za linę przerzuconą przez bloczek?
Rozwiązanie:
Początek formularza
Równowaga sił:
1.
2.
3.
4.
Równowaga momentów sił względem punktu O:
1.
2.
3.
4.
Siła napięcia liny F2 =
1.
2.
3.
4.
Co daje:
1.
0,245 kN
2.
490 N
3.
327 N
4.
0,5 kN
Dół formularza
Zadanie III-42
Jaką moc P0 ma silnik tokarki, jeżeli nóż skrawający działa momentem siły równym U = 70 Nm, a tokarka wykonuje 6 obrotów na sekundę (f = 6 1/s)? Sprawność urządzenia wynosi = 70%.
Rozwiązanie:
Początek formularza
Moc wydzielana na tokarce :
1.
2.
3.
4.
Moc noża skrawającego tokarki:
1.
2.
3.
4.
Stąd moc P0 =
1.
2.
3.
4.
Co daje:
1.
4,2 kW
2.
3,8 kW
3.
1500 W
4.
2500 W
Dół formularza
Zadanie III-43
Chłopiec ciągnie sanki siłą skierowaną pod kątem = 30o do podłoża, poruszając się ruchem jednostajnym. Jaką pracę musi on wykonać na drodze s = 50 m, jeżeli współczynnik tarcia wynosi f = 0,4 , a masa sanek wynosi m = 10 kg?
Rozwiązanie:
Początek formularza
Siła tarcia T =
1.
2.
3.
4.
Siła tarcia T jest też równa sile:
1.
2.
3.
4.
Praca siły F jest równa W =
1.
2.
3.
4.
Co daje:
1.
1153 J
2.
1594 J
3.
3570 J
4.
1730 J
Dół formularza
Zadanie III-44
Ile wynosi praca wykonana przez siłę tarcia podczas zsuwania się ciała o masie m = 2 kg umieszczonego na wysokości h = 2 m na równi pochyłej o kącie nachylenia = 60o? Współczynnik tarcia wynosi f = 0,2.
Rozwiązanie:
Początek formularza
Siła tarcia:
1.
2.
3.
4.
Praca siły tarcia na drodze s to W =
1.
2.
3.
4.
Praca ta jest równa:
1.
2.
3.
4.
Co daje:
1.
8 J
2.
-4,5 J
3.
3,2 J
4.
5,2 J
Dół formularza
Zadanie III-45
Jaką prędkość osiągnie ciało o masie m = 1 kg, które pod działaniem stałej siły F = 20 N jest podnoszone na wysokość h = 2 m? Prędkość początkowa ciała jest równa zeru.
Rozwiązanie:
Początek formularza
Praca wykonana przez siłę jest równa W =
1.
2.
3.
4.
0
Bilans energetyczny:
1.
2.
3.
4.
Prędkość ciała V =
1.
2.
3.
4.
Co daje:
1.
2,2 m/s
2.
0
3.
6,4 m/s
4.
9,8 m/s
Dół formularza
Zadanie III-46
Jaką siłą F należy działać na walec o masie m = 2 kg toczący się bez poślizgu, aby rozpędzić go od prędkości 0 do V = 10 m/s na drodze s = 10 m?
Rozwiązanie:
Początek formularza
Energia kinetyczna wyraża się wzorem:
1.
2.
3.
4.
I jest równa F =
1.
2.
3.
4.
Energia kinetyczna jest równa pracy siły F, stąd obliczamy siłę F =
1.
2.
3.
4.
Co daje:
1.
5 N
2.
10 N
3.
15 N
4.
20 N
Dół formularza
Zadanie III-47
Ciało o masie m = 5 kg zsuwa się z wysokości h = 1 m po równi pochyłej o kącie nachylenia = 30o. Ile wynosi energia kinetyczna Ek tego ciała u podstawy równi, jeżeli współczynnik tarcia wynosi f = 0,2 ? Jak wygląda bilans energetyczny układu?
Rozwiązanie:
Początek formularza
Praca siły tarcia WT =
1.
2.
3.
4.
Energia kinetyczna Ek =
1.
2.
3.
4.
I jest ona równa:
1.
2.
3.
4.
Co daje:
1.
23 J
2.
32 J
3.
48 J
4.
112 J
Dół formularza
Zadanie III-48
Z jakiej minimalnej wysokości h musi stoczyć się kulka (bez poślizgu), aby wykonać "diabelską pętlę" o promieniu R = 20 cm ustawioną na końcu równi? Rozmiary kulki są zaniedbywalnie małe w stosunku do rozmiarów pętli.
Rozwiązanie:
Początek formularza
Porównanie siły odśrodkowej z siłą ciężkości w punkcie B:
1.
2.
3.
4.
Zasada zachowania energii (punkty A i B):
1.
2.
3.
4.
Stąd wysokość h =
1.
2,7 R
2.
1,5 R
3.
1,8 R
4.
3,4 R
Co daje:
1.
30 cm
2.
3,6 cm
3.
54 cm
4.
68 cm
Dół formularza
Zadanie III-49
Korzystając z zasady zachowania energii wyprowadź wzór na maksymalną wysokość w rzucie ukośnym.
Rozwiązanie:
Początek formularza
Energia w punkcie A to EA =
1.
2.
3.
4.
Energia w punkcie B to EB =
1.
2.
3.
4.
Bilans energetyczny prowadzi do zależności:
1.
2.
3.
4.
Ostatecznie h =
1.
2.
3.
4.
Dół formularza
Zadanie III-50
Piłeczka pingpongowa uderzając w podłoże traci = 20% swojej energii kinetycznej. Oblicz wysokość na jaką dotrze piłeczka po jednokrotnym, dwukrotnym lub trzykrotnym odbiciu od podłoża, jeżeli została zrzucona z wysokości h = 1 m. Jaki ciąg tworzą te wysokości? Ile wynosi droga s jaką przebędzie piłeczka do momentu zatrzymania się?
Rozwiązanie:
Początek formularza
Wysokość, jaką osiągnie piłeczka po pierwszym odbiciu h1 =
1.
2.
3.
4.
Wysokość, jaką piłeczka osiągnie po N-tym odbiciu hN=
1.
2.
3.
4.
Drogę obliczamy z sumy szeregu geometrycznego i wynosi ona s =
1.
2.
3.
4.
Co daje:
1.
5 m
2.
9 m
3.
21 m
4.
32 m
Dół formularza
Zadanie III-51
Pod działaniem siły F = 25 N na drodze s = 2 m ciało pęd ciała osiągnął wartość p = 10
. Jaka jest masa m tego ciała?
Rozwiązanie:
Początek formularza
Energia kinetyczna ciała Ek =
1.
2.
3.
4.
Zamianę pracy siły F na energię kinetyczną wyraża wzór:
1.
2.
3.
4.
Z którego liczymy masę m =
1.
2.
3.
4.
Co daje:
1.
0,5 kg
2.
1 kg
3.
2 kg
4.
2,5 kg
Dół formularza
Zadanie III-52
Ile wynosi średnia siła działająca na ścianę podczas zderzenia z piłką o masie m = 0,5 kg, jeżeli pada ona z prędkością V1 = 5 m/s, odbija się z prędkością V2 = 4 m/s, a czas zderzenia wynosi t = 0,25 s ?
Rozwiązanie:
Początek formularza
Druga zasada dynamiki:
1.
2.
3.
4.
Zmiana pędu p =
1.
2.
3.
4.
Ostatecznie siła F =
1.
2.
3.
4.
Co daje:
1.
2 N
2.
12 N
3.
18 N
4.
0,125 N
Dół formularza
Zadanie III-53
Pocisk rzucony jest z prędkością V0 = 5 m/s pod kątem = 60odo poziomu, rozrywa się w najwyższym punkcie lotu na dwie równe części tak, że jedna połówka zatrzymuje się, a następnie opada pionowo w dół. Ile wynosi zasięg rzutu d drugiej połówki?
Rozwiązanie:
Początek formularza
Dla kąta i prędkości początkowej V0 zasięg rzutu wynosi d =
1.
2.
3.
4.
Po rozerwaniu w najwyższym punkcie pocisku na dwie równe części, jedna z połówek uzyskuje prędkość:
1.
2.
3.
4.
Co pozwoli jej pokonać odległość, liczoną od punktu wystrzelenia pocisku, wynoszącą:
1.
2.
3.
4.
Co daje:
1.
2,5 m
2.
3,3 m
3.
45 m
4.
182 m
Dół formularza
Zadanie III-54
Dwie identyczne kule, z których jedna przed zderzeniem spoczywa, zderzają się sprężyście. Oblicz prędkość kul U1 i U2 po zderzeniu, jeżeli prędkość drugiej kuli przed zderzeniem wynosi V1 .
Rozwiązanie:
Początek formularza
Zasada zachowania pędu:
1.
2.
3.
4.
Zasada zachowania energii:
1.
2.
3.
4.
Prowadzi to do równania kwadratowego:
1.
2.
3.
4.
Którego szukanym rozwiązaniem jest:
1.
2.
3.
4.
Dół formularza
Zadanie III-55
Dwie identyczne kule, z których jedna przed zderzeniem spoczywa, a druga porusza się z prędkością V, zderzają się całkowicie nie sprężyście. Oblicz prędkość U kul po zderzeniu oraz ciepło Q wydzielane w wyniku tego zderzenia.
Rozwiązanie:
Początek formularza
Zasada zachowania pędu:
1.
2.
3.
4.
Zasada zachowania energii mechanicznej:
1.
2.
3.
nie obowiązuje
4.
Prędkość kul po zderzeniu:
1.
2.
3.
4.
Ciepło wydzielone Q =
1.
2.
3.
4.
0
Dół formularza
Zadanie III-56
W klocek o masie M = 1 kg zawieszony na nici uderza centralnie pocisk o masie m = 10 g i prędkości V0 = 300 m/s i grzęźnie w nim. O jaki kąt odchyli się klocek, jeżeli odległość od punktu zawieszenia do środka masy klocka wynosi l = 1 m?
Rozwiązanie:
Początek formularza
Dla zderzenia w punkcie A korzystamy z zasady zachowania pędu:
1.
2.
3.
4.
Z porównania energii w punktach A i B otrzymujemy wysokość, na jaką klocek odchyli się h =
1.
2.
3.
4.
Kąt nachylenia nici =
1.
2.
3.
4.
Co daje:
1.
20,5o
2.
42,1o
3.
56,6o
4.
73,2o
Dół formularza
Zadanie III-57
Ciało o masie m = 100 g zaczepione na sznurku przewleczonym przez pionową rurkę, obraca się po kole o promieniu R1 = 40 cm, wykonując 1 obrót na sekundę (f1 = 1 s-1). Z jaką częstotliwością f2 będzie poruszać się ciało, jeśli ciągnąc za sznurek zmniejszymy jego promień obrotu do R2 = 20 cm? Jak zmienia się energia układu?
Rozwiązanie:
Początek formularza
Moment siły F jest równy zeru, więc korzystamy z zasady zachowania momentu pędu:
1.
2.
3.
4.
Moment bezwładności ciała - punktu materialnego I =
1.
2.
3.
4.
Nowa częstotliwość obrotów f2 =
1.
2.
3.
4.
Co daje:
1.
300 1/min
2.
4 1/s
3.
2 1/s
4.
0,5 1/s
Dół formularza
Zadanie III-58
Odosobniona gwiazda, będąca jednorodną kulą o stałej masie M, kurczy się zmniejszając n-krotnie okres obrotu 1 wokół własnej osi. Jakiej zmianie w wyniku tego procesu uległo przyspieszenie grawitacyjne na jej biegunach?
Rozwiązanie:
Początek formularza
Przyspieszenie grawitacyjne na biegunie gwiazdy g =
1.
2.
3.
4.
Zasada zachowania momentu pędu:
1.
2.
3.
4.
Stosunek przyspieszeń grawitacyjnych
=
1.
2.
3.
4.
Co daje:
1.
2.
3.
4.
Dół formularza
Zadanie III-59
Cylindryczne naczynie o promieniu R = 20 cm i wysokości h = 50 cm oraz momencie bezwładności I0 = 1,26 kgm2 zostało napełnione wodą ( ρw = 1 g/cm3), a następnie wprowadzone w ruch obrotowy wokół osi symetrii z częstością 1 = 5 rad/s. Po pewnym czasie, w wyniku nieszczelności na osi obrotu, woda wyciekła z cylindra. Ile wynosi nowa częstość obrotu naczynia 2? Wszelkie opory ruchu zaniedbać. Naczynie jest zamknięte od góry, więc w trakcie wprowadzania w ruch obrotowy powierzchnia wody nie zmienia się.
Rozwiązanie:
Początek formularza
Zasada zachowania momentu pędu:
1.
2.
3.
4.
Moment bezwładności naczynia z wodą I1 =
1.
2.
3.
4.
Stosunek częstości obrotu naczynia 2/1=
1.
2.
3.
4.
Co daje: 2=
1.
5 rad/s
2.
10 rad/s
3.
20 rad/s
4.
60 rad/s
Dół formularza
Zadanie III-60
Wyprowadź wzór na pierwszą prędkość kosmiczną V1 przyjmując promień Ziemi RZ = 6,38106 m oraz przyspieszenie grawitacyjne g = 9,81 m/s2.
Rozwiązanie:
Początek formularza
Siła grawitacyjna jest siłą dośrodkową:
1.
2.
3.
4.
Stąd V1 =
1.
2.
3.
4.
Czyli V1 =
1.
2.
3.
4.
Co daje:
1.
3108m/s
2.
11,2 km/s
3.
7,9 km/h
4.
7,9 km/s
Dół formularza
Zadanie III-61
Wyprowadź wzór na drugą prędkość kosmiczną V2, wiedząc, że pierwsza prędkość kosmiczna wynosi V1=7,9 km/s.
Rozwiązanie:
Początek formularza
Zasada zachowania energii dla punktu przy powierzchni Ziemi oraz punktu w nieskończoności:
1.
2.
3.
4.
Stąd V2 =
1.
2.
3.
4.
Czyli V2 =
1.
2 V1
2.
3 V1
3.
V1
4.
V1
Co daje:
1.
3108m/s
2.
7,9 km/s
3.
7,9 km/h
4.
11,2 km/s
Dół formularza
Zadanie III-62
Na jaką maksymalną wysokość h ponad Ziemię wzniesie się ciało, które wystrzelono z powierzchni Ziemi z prędkością początkową równą pierwszej prędkości kosmicznej V1 i skierowaną pionowo do góry?
Rozwiązanie:
Początek formularza
Energia w punkcie A to EA =
1.
2.
3.
4.
Energia w punkcie B to EB =
1.
2.
3.
4.
0
Pierwsza prędkość kosmiczna V1 =
1.
2.
3.
4.
Z porównania energii w punkcie A i B otrzymujemy wysokość h =
1.
30 km
2.
RZ
3.
3,5 RZ
4.
RZ
Dół formularza
Zadanie III-63
Jaką energię Q rozproszył meteor o masie m = 100 g, jeżeli wchodząc w atmosferę ziemską, w odległości h = 100 km od powierzchni Ziemi, miał on prędkość równą pierwszej prędkości kosmicznej V1 , a uderzył w powierzchnię Ziemi z prędkością V2 = 100 km/h?
Rozwiązanie:
Początek formularza
Pierwsza prędkość kosmiczna V1 =
1.
500 m/s
2.
7,9 km/s
3.
11,2 km/s
4.
3x108m/s
Bilans energetyczny:
1.
2.
3.
4.
Energia rozproszona Q =
1.
2.
3.
4.
Co daje:
1.
3,5 MJ
2.
45 kJ
3.
850 J
4.
1,5 GJ
Dół formularza
Zadanie III-64
Wyprowadź trzecie prawo Kepplera dla orbit kołowych.
Rozwiązanie:
Początek formularza
Siła dośrodkowa Fd =
1.
2.
3.
4.
Siła grawitacji FG =
1.
2.
3.
4.
Z porównania siły dośrodkowej i grawitacyjnej otrzymamy:
1.
2.
3.
4.
Stąd:
1.
2.
3.
4.
Dół formularza
Zadanie III-65
Na jakiej wysokości h nad Ziemią musi krążyć w płaszczyźnie równika satelita geostacjonarny?
Rozwiązanie:
Początek formularza
Siła grawitacyjna jest siłą dośrodkową:
1.
2.
3.
4.
Stąd odległość satelity od środka Ziemi R =
1.
2.
3.
4.
Oraz wysokość satelity nad Ziemią h =
1.
R
2.
R+RZ
3.
R- 2RZ
4.
R- RZ
Co daje:
1.
36106m
2.
6,4106m
3.
2106m
4.
3,8106m
Dół formularza
Zadanie III-66
Gwiazda podwójna składa się z dwóch obiektów o tej samej masie m znajdujących się w odległości d od siebie. Znając okres obrotu T wokół środka masy, znajdź masy gwiazd tworzących układ.
Rozwiązanie:
Początek formularza
Siła grawitacyjna FG =
1.
2.
3.
4.
Siła dośrodkowa Fd =
1.
2.
3.
4.
Gdzie =
1.
2.
3.
4.
Zatem masa każdej gwiazdy wynosi m =
1.
2.
3.
4.
Dół formularza
Zadanie III-67
Dwie identyczne sprężyny o stałej sprężystości k łączymy równolegle lub szeregowo. Ile wynoszą nowe stałe sprężystości kr i ksz odpowiednio w połączeniach równoległym i szeregowym?
Rozwiązanie:
Początek formularza
W połączeniu równoległym dodają się siły, FZ =
1.
2.
3.
4.
Stąd kr =
1.
2.
k
3.
4.
W połączeniu szeregowym dodają się wydłużenia xsz =
1.
2.
3.
4.
Stąd ksz =
1.
2.
3.
4.
Dół formularza
Zadanie III-68
Siła FZ = 10 N rozciąga sprężynę zwiększając jej długość o x = 5 cm. Oblicz pracę W potrzebną do rozciągnięcia sprężyny o kolejne 5 cm.
Rozwiązanie:
Początek formularza
Stała sprężystości k =
1.
2.
3.
4.
Energia sprężystości wyraża się wzorem EP =
1.
2.
3.
4.
Pracę liczymy z różnicy energii sprężystości W =
1.
2.
3.
4.
Co daje:
1.
1 J
2.
10 J
3.
5 J
4.
0,75 J
Dół formularza
Zadanie III-69
Oblicz energię całkowitą oscylatora harmonicznego o stałej sprężystości k.
Rozwiązanie:
Początek formularza
Dla oscylatora o równaniu
prędkość V =
1.
2.
3.
4.
Częstość oscylacji =
1.
2.
3.
4.
Energia całkowita EC =
1.
2.
3.
4.
Co daje:
1.
2.
3.
4.
Dół formularza
Zadanie III-70
Kulkę zawieszoną na nitce umieszczono w windzie. Porównaj okres wahań kulki w windzie stojącej i poruszającej się w dół z przyspieszeniem g/2.
Rozwiązanie:
Początek formularza
W windzie, poruszającej się z przyspieszeniem, działa siła bezwładności. Równanie ruchu kulki ma =
1.
2.
3.
4.
Czyli ma =
1.
2.
3.
4.
Jest to równanie wahadła, a odpowiadający mu okres to T =
1.
2.
3.
4.
Stosunek tego okresu, do okresu wahań kulki w windzie stojącej
1.
2
2.
3.
4.
Dół formularza
Zadanie III-71
Oblicz okres oscylacji T ciała puszczonego z powierzchni Ziemi i mogącego poruszać się swobodnie w tunelu przechodzącym przez jej środek. Porównaj ten okres z czasem obiegu satelity tuż przy powierzchni Ziemi.
Rozwiązanie:
Początek formularza
Siła grawitacyjna wewnątrz Ziemi F =
1.
2.
3.
4.
0
Jest to siła harmoniczna o stałej proporcjonalności k=-F/x
1.
2.
3.
4.
Okres oscylacji T =
1.
2.
3.
4.
Okres powyższy jest równy okresowi obiegu satelity TS =
gdzie V1 - pierwsza prędkość kosmiczna
1.
2.
3.
4.
Dół formularza
Zadanie III-72
Oblicz okres małych drgań wahadła matematycznego o długości l = 50 cm, umieszczonego w wagonie pociągu poruszającego się po poziomym torze z przyspieszeniem au = 4 m/s2.
Rozwiązanie:
Początek formularza
Wagon pociągu jest układem nieinercjalnym, wiec na ciało działa siła bezwładności Fb=
1.
2.
3.
4.
Wartość efektywnego przyspieszenia działającego na ciało wynosi:
1.
2.
3.
4.
Zatem okres wahań T =
1.
2.
3.
4.
Co daje:
1.
0,5 s
2.
1,36 s
3.
3,14 s
4.
2,5 s
Dół formularza
Zadanie III-73
Jednorodny pręt o długości l został zawieszony na osi przechodzącej w odległości x powyżej jego środka masy. Dla jakiej odległości x okres tak otrzymanego wahadła jest najkrótszy?
Rozwiązanie:
Początek formularza
Moment bezwładności pręta obliczamy z twierdzenia Steinera I =
1.
2.
3.
4.
Okres takiego wahadła T =
1.
2.
3.
4.
Minimum okresu przypada na
1.
2.
3.
4.
Wtedy okres T =
1.
2.
3.
4.
33