56 Difftrtntlaiion of Fund lont fCA. i
564. Find y', if
¥ - Y ** y~j *in* x «*• x.
Solution In x + ln (I — *) —In (I +^*)-{-3 In *Jn * + 2 In co*x;
»•-? 1 , I-O ** , , » ,L ^llnr
565. Find y‘, ii y — (sin jc)*.
Solulioa. Iny —x Inslojr. -i y' — In iln x + xcot r, it‘ — (»ln x)* (In sin x + x cot x).
In the following problcms find y' altcr first taking logs of the funclion y»/(x):
566. |
y-(*+l)(2* + l)(3*+l). |
574. y- Vx. |
567. |
y-l.+WCa)" |
575. y-xv~‘. |
568. |
576. y-x*\ | |
569. |
y*-* V jręv |
577. y-**'"*. |
570. |
(*-2 )• 7 Tf^-iru-ar |
578. y— (cos x),ln*. 579. J--(H-i)'. |
571. | ||
572. |
580. y—(aretan x)*. |
573. y-x*\
I*. The tkrlv*llve of an invme luncllon. II a functlon y —/(*) ha* a derivative yg »6 0, tben llie derivative of the lnvcrsc functlon x-/“'(y) b
I
dx I
lumpie I. Find the derlvatlve x’f. il
y-x + lnx.
Solutlon. We luve ya — | + hence. / i_.
2*. The dcrlvallve« ol functlon* (epreacnted parauielrlcally. II a functlon y U relatrd to an argument x by mearu ol a parameter t,
Hien
I *-t(0. \ »-*(0.
or, In other notation.
Liamplc 2. Find 3^, II
t
dx'
dt
Solutlon. We flnd
Xr-«lC05f, \
y —o ain I. |
t »tn / and ^maeotl. Whcnce
cot 1.
3*. The derhrathr* ol an Impllcil lunctlon. II the relatlonahlp belween x and y Is given in implłcit loim,
F(x.y)-0. U)
Ihen to find tłve derlvallvr y],—y' In the slmplełt caaea It It aufOcłent: 1) to calculate the derlvatlve, wlth rcspect to x, ol the lelt aide ol equation (I), taking y as a lunclion ol r, 2) to equ#te IhU derlvatlve to iwo. that U. to put
(2)
and 3) to *ol*e the resulllng equation lor y.
Eiample 3. Find the dcrlvatlvc u\ II
*'+*•—3oxy-0. O)
Solutlon. Forming the deitvatlve ol the lelt aide ol (3) and cquallug U to rwo, we get
3x* +V2’ —30 ty t