Po odpowiednich podstawieniach i przekształceniach otrzymujemy

I (s) =


ER2

Podstawiając wartości liczbowe, mamy:

— przy C = 1/86 F

w s2 + 20s + 96 Sj = — 8 ; s2 = —12

zatem stosując wzór Heaviside’a, otrzymujemy przebieg prądu w czasie 1 . 1


KO = 8


-16 + 20


e-8' +


-24 + 20


O-


2 (e —e ) A


— przy C = 0,01 F

8


100


8

s2+20s + 100 (s + 10)2 zatem dokonując transformacji odwrotnej Laplace’a, otrzymujemy

KO = 8te-10t A

przy C = 1/104 F

8


7(s) =


8-2


s2+20s + 104    2 (s +10)2 + 4

zatem'

i (t) = 4e-ł0t sin 21 A


= 4


(s +10)2 + 22


S.13.

W obwodzie przedstawionym na rys. 8.13a w chwili t = 0 przełączono łącznik W z pozycji 1 do pozycji 2. Obliczyć prądy i2(t)-

Dane: ex = Ei = 2 V; e2 = E2 = 1 V;

R, = R2 = 1 £2; L = 1 H, C = 1 F.

„n

ł2

‘1

1 2

n

I

b*

J c

r i

b

Rys. 8.13



212