00385 ±2cbb0e868a8abdf5908dfc195d0163

00385 ±2cbb0e868a8abdf5908dfc195d0163



389


Regret Indices and Capability Quantification

Motivation for Forming Composite Indices When EE Is Smali It is straight-forward to represent the approximating Poisson distribution on the same scalÄ™ as the observed regret indices. One simply applies the appropriate inverse transformation:

(fitted I) = (theoretical EN distribution) / EE    [21]

In other words, our Poisson approximation with unit cell-widths corresponds to a discrete regret index distribution with cell-widths of VR/ER^ = 1/EE . Because these regret index cell-widths will be veiy wide whenever EE is smali, there is very little hope of getting a good Poisson approximation in cases where EE is smali.

In the following sense, smali EE cases are merely examples of the usual distinction between statistical significance and practical importance. Once composite indices are formed (as explained below in Equation [23]) to combine results over multiple measurements, over time, and/or over related processes, equivalent expectancy will accumulate to, say, EE > 2. The Poisson step-size corresponding to this composite regret index will then shrink to 0.5 or less, and all lack-of-fit in the approximating Poisson distribution may simply vanish!

Lack-of-Fit Only in the Right-Hand TaiÅ‚ Poisson lack-of-fit that occurs only in the extreme right-hand taiÅ‚ of an EN sample is easily tolerated. The essential feature of a "successful" smoothing for a regret index distribution is that it provides a good representation over the rangÄ™ corresponding to relatively good performance, I < 1. In my experience at least, processes in doubtful States of statistical control tend to be unstable primarily in their right-hand regret taiÅ‚.

Visual examination of a Poisson P-P probability plot will reveal whether the Kolmogorov-Smimov statistic is detecting lack-of-fit primarily in the right-hand taiÅ‚. And significant lack-of-fit may simply be ignored in this case. On the other hand, a morÄ™ systematic approach is provided for this sort of situation by the methods for fitting gamma distributions using order-statistics, as described next.

Smoothing Regrets with a Continuous Gamma Distribution Wilk, Gnanadesikan, and Huyett (1962a, 1962b) describe Q-Q probability plotting methods for fitting gamma distributions that depend only upon a subjectiyely chosen subset of the smallest regret index order-statistics. These Q-Q methods estimate the scalÄ™ parameter as well as the shape parameter of gamma distributions. Thus, while preliminary EN rescaling of regret is not really


Wyszukiwarka

Podobne podstrony:
00363 ?1269f5a82d63a83345fed901868e3a Regret Indices and Capability Quantification 367 1 ---O Tj &n
00365 m2e8679c0886ed1125ed5bcd4590b4c 369 Regret Indices and Capability Quantification a power of 2
00367 =71d7a8280d8fadbe63f01873c0973e 371Regret Indices and Capability Quantification the regret fu
00369 a2c33237555c8d05d8989d6c335c61b Regret Indices and Capability Quantification 373 Fnequency Fi
00371 ?b95f88afbfde7311cc63a5711edf05 375 Regret Indices and Capability Quantification distribution
00373 ?f8bb41d0a49f6af1383e41cb69c982 377 Regret Indices and Capability Quantification restrict att
00377 ?36849b7250973af2d2db345046c904 381 Regret Indices and Capability Quantification psychologica
00379 k1bca0988e84c64c1248301a7563c01 383 Regret Indices and Capability Quantification confidence,
00381 ?c79f45a4235fae8108ab837f609112 385 Regret Indices and Capability Quantification FigurÄ™ 11. C
00387 ?11c5f7f6b9e37d6357e3d0828f7a10 Regret Indices and Capability Quantification 391 Probabi lity
00389 ?7d667a499ab8393b64b07fdceea017 393 Regret Indices and Capability Quantification pharmaceutic
00393 cd07593964298da297f84c0cc7e26b8 397 Regret Indices and Capability Quantification Given finite
00395 /bff9ce23d8e0e8c60ebe0c43cea6c7 Regret Indices and Capability Quantification 399 FigurÄ™ 15. C
00401 ?848c3200cc008ace1e34d0a23fb13b 405 Regret Indices and Capability Quantification Peam, W. L.,
00391 >56fc344800cba14806c1d054f34026 395 Regret Indices and Capability Quantification capability b
00359 ?76870165d8f770f870b6abb7be1062 18Regret Indices and Capability QuantificationRobert L. Obenc
00375 c4f511319d7a5304caef26eb09cbcb 379Regret Indices and Capability QuantificationCumulative Cap
00383 5e770fc406d16ac5a9608e0d12c453e 387Regret Indices and Capability Quantification of these appr

więcej podobnych podstron