00483 ?a0a2174ee321f03b6f4c5f28194bec

00483 ?a0a2174ee321f03b6f4c5f28194bec



489


An Algorithm and a Graphical Approach for Short Run Processes

END;

if abs(E)>0.0 then gamma:=A/E else gamma:=1.0; {*** self-scaling BFGS ***}

FOR I:=2 TO N IX) FOR J:=2 TO N DO

H[I,J]:=gamma*H[I,J]+(1.0+gamma*(E/A))*C[I,J]/A-gamma*((P[I]*D[J])+(B[I]*P[J]))/A;

END;

PROCEDURĘ RESTART;

VAR I,J:INTEGER;

BEGIN

FOR I:=2 TO N DO FOR J:=2 TO N DO IF I=J THEN H[I,J]:=1.0 ELSE H[I,J]:=0.0 END;

Function Findmaxstep(X,D:nx 1):extended; var i:integer,

Gmin,Gi:extended; be gin

Gmin:=le20; for i:=2 to n do begin

if D[i] < 0 then GI:=abs(LB[i]-X[i]) else GI:=abs(UB[i]-X(i]); if GKGmin then Gmin:=GI; end;

If Gmin>=le20 then Findmaxstep:=0.1 else Findmaxstep:=Gmin-DDelta; end;

PROCEDURĘ BFGS(VAR X:NXl;limit:integer); const max_it= 100;

VAR I,J,K:INTEGER; x_ant,P,Q,D,G:NXl;

Dnorm,Gmin,f_ant,FN,ALPHA:EXTENDED;

BEGIN

K:=0;it:=0;fti:=1 elOOO;

REPEAT

K:=K+1 ;it:=it+l ;f_ant:=fh;FN:=Fun(X);

IF it=l THEN BEGIN GRA(X);restart;END;

FOR I:=2 TO N DO BEGIN

x_ant[i]:=x[i];G[I]:=GRAD[I];D[I]:=0.0;

FOR J:=2 TO N DO D[I]:=D[I]-H[I,J]*GRAD(J];

END;

X_ANT[ 1 ]:=X[ 1 ];X_ANT[4]:=X[4];Gmin:=Findmaxstep(X,D);Dnorm:=norm(D); for i:=2 to n do d[i]:=d[i]*Gmin/Dnorm; {** normalize D to max step size **} ALPHA:=GOLDSTEIN_ARMIJO(FN,X,G,D);

FOR I:=2 TO N DO

BEGIN {**** Check bounds before moving **♦*}

IF p({I]+ALPHA*D[I]<=UB[I]) AND (X[I]+ALPHA*D[I]>=LB[I])

THEN X[I]:=X[I]+ALPHA*D[I]; P[I]:=ALPHA*D[I]

END;

GRA(X);FOR I;=2 TO N DO Q[I]:=GRAD[I]-G[I];

IF K=limit THEN begin k:=0; RESTART;end;

IF (ABS(NORM(X>NORM(x_ANT))>DDELTA) and (norm(p)*norm(q)<>0.0) THEN UPDATE_H(H,P,Q);


Wyszukiwarka

Podobne podstrony:
00469 ?5193b0eebc921358b059bb4bde7465 475 An Algorithm and a Graphical Approach for Short Run Proce
00471 $17d33eb6862cf36c8a862921ea9ad8 477 An Algorithm and a Graphical Approach for Short Run Proce
00473 d0c0d42d5f49cfa69c2e04c787ef91 479An Algorithm and a Graphical Approach for Short Run Proces
00475 >f2c01f7e13779b48d08895e2b7b747 481 An Algorithm and a Graphical Approach for Short Run Proce
00477 ?d879c3fb6e9f78fbb855dd7194d159 An Algorithm and a Graphical Approach for Short Run Processes
00479 81d545dff4b0a8a7a6a14da7b1e12c 485An Algorithm and a Graphical Approach for Short Run Proces
00481 maaff74c5d41ebc0364d42700e37193 487An Algorithm and a Graphical Approach for Short Run Proces
00485 ?5800827e240b30f763697e2e2f9b46 491An Algorithm and a Graphical Approach for Short Run Proces
00467 Xfbb31bd3227a9d9cedd56fce10b52e 21An Algorithm and a Graphical Approach for the Economic Desi
00007 282c5a7fa7659c3a226b73b7e597d4b 6 Keats & Montgomery The fourth paper by Enriąue Del Cast
Angielski asking for and giving?vice H 1Asking for/Giving Advice A.    Read the fol
Algorytm 2: Koniunkcja logiczna 1 1: result=TRUE 2: for i = 1 to n in parallel do 3: if A[i]==FALSE
00434 u32b79da7b4e1841dd92bd2bf819342 A Graphical Aid for Analyzing Autocorrelated Dynamical System
Tri da algoritmu Vestaveny algoritmus Select the algorithm class in the tree bellow and programmer l
Selectthe algorithm class in the tree bellow and programmer level for a Programmer levei
Front wfeDJulię/InncJbng ‘Make a place next to Julia Quinn and Stephanie Laurem for this top-notch n
image003 ‘I admirc hcr novcls . . . shc has great fcrtility of łnvcntion. ingenuity and a wondcrful
image033 * Then I saw a new heaven and a new earth: for ttie first heaven and the first earth had pa

więcej podobnych podstron