Stahl67 bmp

Stahl67 bmp



166


WALTER R. STAHL

193

194

195

196

197

197

198

198

199

200

201

202

203

204 204 206 206 207

207

208

209

210


VI. Cybemetic Models.......

VII. Simulation of Physiological Regulation

A.    Cardiovascular Control Models

B.    Respiratory Control Models ....

C.    Metabolic Control Models ....

D.    Thermal Regulation......

VIII. Neurophysiological Models.....

A.    Models of Neurons and Nerve Fibers

B. Artificial Nerve Networks    ....

C.    Visual System Models.....

IX. Artificial Intelligence and Algorithmic Models of

Thought.........

A.    Turing’s Test and Artificial Intelligence.

B.    Mathematical Leaming Models

X. Self-Organizing Systems and Bionics

A.    Self-Organizing System Models

B.    Modeling of Self-Reproduction

XI. Abstract and Axiomatic Models    ....

Biological Axiomatics......

XII. The Role of Biological Modeling ....

A.    Validity of the Model.....

B.    Modeling and Theoretical Biology

References........

I. Models of Biological Systems

The construction of actual and mathematical or Computer models w an increasingly important tool of theoretical biology. Many dozens of works pertaining to biological modeling and simulation are publishe<łannually. They may deal with physical function of the cardiovascular system, regulation of blood pressure or respiration, stochastic leaming, genetic selection, membranę transport, or molecular feedback control in cells. Nearly all these studies fali properly into the domain of theoretical biology.

An attempt will be madę to provide a generał integrated conceptual framework for comparing models of biological systems with their real counterparts. Dimensionless numbers, used for analysis of physical: models or analogs, are discussed as an example of objective “similarity criteria” which indicate when a model can provide valid new information, The concept of mathematical or computational similarity criteria is thett extended to include any set of specific rules (algorithm) which defines A. certain class of related systems (models). A table of types of differeofc models and their associated invariant properties is presented and make#


Wyszukiwarka

Podobne podstrony:
98 Datka S.    88 Koral«8kl J.    195, 196, 197, 198, 199, 200 Obuohow
CCF20100515006 192. 193. 194. 195. 196. 197. Rozpraszanie światła Rayleigha Rozpraszanie światła w
PZK286 INDEKS NAZWISKA Aaker, D., 98,100.193,194,195, 200 Adler, A., 66-67 Aj zen, I., 82, 91-92&nbs
larsen1465 Skorowidz 1465 Układ autonomiczny współczulny, receptory 194-195, 196(t) —
Stahl67 bmp 168 WALTER R. STAHL entire field of cybernetics. Westcott (1960) emphasizes the proble
Stahl67 bmp 170 WALTER R. STAHL Consider a small-scale test model of a new type of turbinę, which
Stahl67 bmp 172 WALTER R. STAHL TABLE I Mathematical Similaeitt Criteria for Variotjs Types of Mod
Stahl67 bmp 174 WALTER R. STAHL C. Mathematical Naturę of Modeling Invariants The different variet
Stahl67 bmp 178 WALTER R. STAHL a dimensionless criterion associated with the Poiseuille flow law.
Stahl67 bmp 180 WALTER R. STAHL of the entire cardiovascular system based on dozens of eąuations f
Stahl67 bmp 182 WALTER R. STAHL titative greenhouse studies on the effects of water, light intensi
Stahl67 bmp 184 WALTER R. STAHL B. Artificial Kidney The artificial kidney is very dissimilar in a
Stahl67 bmp 186 WALTER R. STAHL a very restricted modeling situation. Mannikins are also in use fo
Stahl67$ bmp 188 WALTER R. STAHL Reeve and Bailey (1962) developed a rather complex differential eq
Stahl67& bmp 190 WALTER R. STAHL sition of an allele in a genome. No physical constants other than
Stahl67( bmp 192 WALTER R. STAHL A rather different approach to ecological modeling has been chosen
Stahl67B bmp 206 WALTER R. STAHL can reproduce all living phenomena, including even such subtle mat
Stahl67D bmp 208 WALTER R. STAHL are intrinsically partial models, as defined by certain particular

więcej podobnych podstron