252
promieniowe i reakcję poosiową. Przyjąć następujące dane: a 220 [mm], h « 287,5 [mm], / = 680 [mm], P, - 11310 [N], P„ - 8580 [N], Pr2 = 13910 [N], Poi = 2820 [N], P02 = 13070 [N]. r, - 186,53 [mm], r2 * 58,38 [mm], gdzie: r,. r2 — promienie toczne kół Materiał wałka: stal 18HGM, dla której kja = 120 [N/mm:], ktj = 150 [N/mtnJ]
Odpowiedź:
Średnica wałka- dc = 83,01 [mm]. dD = 78,7 [mm]. Reakcje promieniowe: Ra = 28650 [N], Rs = 20150 [N], Reakcja poosiowa R0 - 15890 [N].
Zadanie 7.17
Wał transmisyjny wolnoobrotowy, obciążony stałym momentem skręcającym Afę, osadzono niewspółosiowo na trzech łożyskach wahliwych (rys. 7.32). Obliczyć maksymalne naprężenia zastępcze w wałku dla następujących danych: l = 600 [mm], d = 50 [mm]. M0 = 600 [Nra]. e = 1 [mm], ktJ = 130 [N/mm2], k9o = 100 [Nftnm2].
Rvl7.32
Odpowiedź:
Sprzęgła i hamulec mechaniczne posiadają bardzo bogalc piśmiennictwo, zarówno w zakresie opisu konstrukcji, jak również metod obliczeniowych, co uwidoczniono w załączonym spisie literatury. Pewną luką, którą autorzy starają się obecnie wypełnić, jest brak konkretnych liczbowych obliczeń i przykładów związanych z procesem kształtowania inżynierów w tak szerokiej tematyce, O sklai zjawiska może świadczyć nortna PN-71/M-85250. gdzie podano przykłady około 60 sprzęgieł mechanicznych, z których każde wymaga zastosowania innych metod obliczeniowych, zarówno w zakresie konstruowania, jak i doboru Podobnie w zakresie konstrukcji hamulców mechanicznych istnieje duża różnorodność rozwiązań konstrukcyjnych i związanych z tym zagadnień obliczeniowych.
W tym świetle szczególnego znaczenia nabierają takie przykłady obliczeń inżynierskich, które metodycznie można zastosować do możliwie szerokiej grupy zastosowań praktycznych. Na przykład analiza sił w mechanizmach hamulców bębnowych może być przykładem do podobnej analizy dla hamulców tarczowych łub sprzęgieł przełączanych asynchronicznie, np. dla sprzęgieł wiełopłytkowych ciernych. Podobnie przedstawia się sytuacja w zakresie połączeń kształtowych wał-piasta, połączeń śrubowych czy wreszcie obliczeń momentu tarcia. Istnieje również cały szereg wzorów obliczeniowych, przy których stosowaniu należy podkreślić znaczenie założeń będących fundamentem ich genezy. Na przykład przy obliczaniu współczynnika przeciążenia i redukcji bezwładności w układzie napędowym stosuje się powszec mic zasadę zesztywnienia, co jest rów noznaczne 2 pominięciem pewnych form drgań w układzie i związanych z nimi sił dynamicznych. Zadaniem zamieszczonych przykładów będzie więc uzmysłowienie roli założeń oraz uzasadnienie stosowania rozwiązań przybliżonych w niektórych sytuacjach praktycznych.
Przy dającej się obecnie zauważyć tendencji do typizacji rozwiązań konstrukcyjnych sprzęgieł i hamulców, co w dalszej przyszłości może doprowadzić w większości przypadków do doboru gotowych zespołów, istotnego znaczenia nabierają również sprawy własności eksploatacyjnych sprzęgieł i hamulców określonego rodzaju, tj. właściwości dynamiczne, trwałość, sprawność itp Uznano więc za stosowne podanie min. przykładów z zakresu doboru parametrów sprzęgieł i hamulców oraz z zakresu drgań skrętnych układu w aspekcie stosowania sprzęgieł podatnych. W trakcie omawiania i rozwiązywania zadań