(V Tablica 3 (cd.). Kwantyle rozkładu normalnego
p |
0,0000 |
0,0001 |
0,0002 |
0,0003 |
0,0004 |
0,0005 |
0,0006 |
0,0007 |
0,0008 |
0,0009 |
P |
0,990 |
2,326 348 |
2,330 116 |
2,333 918 |
2,337 754 |
2,341 625 |
2,345 531 |
2,349 473 |
2,353 452 |
2,357 469 |
2,361 524 |
0,990 |
0,991 |
,365 618 |
,369 752 |
,373 928 |
,378 145 |
,382 404 |
,386 708 |
,391 056 |
,395 450 |
,399 890 |
,404 378 |
0,991 |
0,992 |
,408 916 |
,413 503 |
,418 142 |
,422 833 |
,427 578 |
,432 379 |
,437 236 |
,442 152 |
,447 127 |
,452 164 |
0,992 |
0,993 |
,457 263 |
,462 428 |
,467 658 |
,472 958 |
,478 327 |
,483 769 |
,489 286 |
,494 879 |
,500 552 |
,506 306 |
0,993 |
0,994 |
,512 144 |
,518 070 |
,524 085 |
,530 192 |
,536 396 |
,542 699 |
,549 104 |
,555 616 |
,562 238 |
,568 974 |
0,994 |
0,995 |
2,575 829 |
2,582 807 |
2,589 914 |
2,597 153 |
2,604 531 |
2,612 054 |
2,619 728 |
2,627 559 |
2,635 554 |
2,643 722 |
0,995 |
0,996 |
,652 070 |
,660 607 |
,669 342 |
,678 286 |
,687 449 |
,696 844 |
,706 483 |
,716 381 |
,726 551 |
,737 012 |
0,996 |
0,997 |
,747 781 |
,758 879 |
,770 327 |
,782 150 |
,794 376 |
,807 034 |
,820 158 |
,833 787 |
,847 963 |
,862 736 |
0,997 |
0,998 |
.878 162 |
,894 304 |
,911 238 |
,929 050 |
,947 843 |
,967 738 |
,988 882 |
3,011 454 |
3,035 672 |
3,061 814 |
0,998 |
0,999 |
3,090 232 |
3,121 389 |
3,155 907 |
3,194 651 |
3,238 880 |
3,290 527 |
3,352 795 |
,431 614 |
,540 084 |
,719 016 |
0,999 |
* 1 O T |
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 |
-iog(l-p) |
3 |
3,090232 3,157982 3,224503 3,289859 3,354107 3,417300 3,479486 3,540710 3,601014 3,660437 |
3 |
4 |
3,719016 3,776785 3,833775 3,890016 3,945537 4,000362 4,054518 4,108028 4,160912 4,213194 |
4 |
5 |
4,264891 4,316023 4,366607 4,416661 4,446199 4,515238 4,563793 4,611873 4,659500 4,706679 |
5 |
6 |
4,753424 | |
7 |
5,199338 | |
8 |
5,612001 | |
9 |
5,99781 |
Tablica 4. Dystrybuanta rozkładu t Studenta
r t |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
r t | |
0,0 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,0 | |
0,1 |
,531 73 |
,535 27 |
,536 67 |
,537 42 |
,537 88 |
,538 20 |
,538 43 |
,538 60 |
,538 73 |
0,1 | |
0,2 |
,562 83 |
,570 02 |
,572 86 |
,574 38 |
,575 32 |
,575 96 |
,576 42 |
,576 76 |
,577 04 |
0,2 | |
0,3 |
,592 77 |
,603 76 |
,608 12 |
,610 44 |
,611 88 |
,612 85 |
,613 56 |
,614 09 |
,614 50' |
0,3 | |
0,4 |
,621 12 |
,636 08 |
,642 03 |
,645 20 |
,647 16 |
,648 50 |
,64946 |
,650 19 |
,650 76 |
0,4 | |
0,5 |
0,647 58 |
0,666 67 |
0,674 28 |
0,678 34 |
0,680 85 |
0,682 56 |
0,683 80 |
0,684 73 |
0,685 46 |
0,5 | |
0,6 |
,672 02 |
,695 29 |
,704 60 |
,709 58 |
,712 67 |
,714 77 |
,716 29 |
,717 45 |
,718 35 |
0,6 | |
0,7 |
,69440 |
,721 81 |
,732 84 |
,738 75 |
,742 43 |
,744 93 |
,746 74 |
,748 11 |
,74919 |
0,7 | |
0,8 |
,714 78 |
,746 18 |
,758 90 |
,765 74 |
,769 99 |
,772 89 |
,775 00 |
,776 59 |
,777 84 |
0,8 | |
0,9 |
,733 26 |
,768 45 |
,782 77 |
,790 50 |
,795 31 |
,798 60 |
,800 99 |
,802 80 |
,804 22 |
0,9 | |
1,0 |
0,750 00 |
0,788 68 |
0,804 50 |
0,813 05 |
0,818 39 |
0,822 04 |
0,824 69 |
0,826 70 |
0,828 28 |
1,0 | |
1,1 |
,765 15 |
,806 98 |
,824 16 |
,833 46 |
,839 27 |
,843 25 |
,846 14 |
,848 34 |
,850 06 |
1,1 | |
1,2 |
,778 86 |
,823 49 |
,841 87 |
,851 82 |
,858 05 |
,862 32 |
,865 41 |
,867 77 |
,869 61 |
1,2 | |
1,3 |
,791 29 |
,838 38 |
,857 77 |
,868 27 |
,874 85 |
,879 35 |
,882 62 |
,885 10 |
,887 05 |
1,3 | |
>• |
1,4 |
,802 57 |
,851 77 |
,872 00 |
,882 95 |
,8S9 80 |
,894 48 |
,897 88 |
,900 46 |
,902 49 |
1,4 |
% |
1,5 |
0,812 83 |
0,863 80 |
0,884 71 |
0,896 00 |
0,903 05 |
0,907 86 |
0,911 35 |
0,914 00 |
0,916 08 |
1,5 |
1,6 |
,822 19 |
,874 64 |
,896 05 |
,907 58 |
,914 75 |
,919 64 |
,923 18 |
,925 87 |
,927 97 |
1,6 | |
V |
1,7 |
,830 75 |
,884 39 |
,906 15 |
,918 72 |
,925 06 |
,92998 |
,933 54 |
,936 22 |
,938 33 |
1,7 |
1,8 |
,838 59 |
,893 17 |
,915 16 |
,926 88 |
,934 12 |
,939 02 |
,942 56 |
,945 22 |
,947 31 |
1,8 | |
1,9 |
,845 79 |
,901 09 |
,923 18 |
,934 88 |
,942 07 |
,946 91 |
,950 40 |
,953 02 |
,955 06 |
1,9 | |
2,0 |
0,852 42 |
0,908 25 |
0,930 34 |
0,941 94 |
0,949 03 |
0,953 79 |
0,957 19 |
0,959 74 |
0,961 72 |
2,0 | |
2,1 |
,858 54 |
,914 73 |
,936 72 |
,948 17 |
,955 12 |
,959 76 |
,963 06 |
,965 53 |
,967 44 |
2,1 | |
2,2 v |
,864 20 |
,920 60 |
,942 41 |
i ,953 67. |
,960 45 |
,964 95 |
,968 13 |
,970 50 |
,972 33 |
2,2 | |
2,3 |
,869 45 |
,925 93 |
,947 51 |
,958 53 |
,965 11 |
,969 45 |
,972 50 |
,974 76 |
,976 50 |
2,3 | |
2,4 |
,874 33 |
,930 77 |
,952 06 |
,962 82 |
,969 19 |
,973 35 |
,976 27 |
,978 41 |
,980 05 |
2,4 |
f
r t \ |
1 |
2 |
3 |
4 |
5 |
6 |
i * 7 |
8 |
9 | |
2,5 |
0,878 88 |
0,935 19 |
0,956 15 |
0,966 62 |
0,972 75 |
0,976 74 |
0,979 50 |
0,981 53 |
0,983 07 |
2,5 |
2,6 |
,883 13 |
,939 23 |
,959 81 |
,969 98 |
,975 87 |
,979 67 |
,982 29 |
,984 19 |
,985 63 |
2,6 |
2,7 |
,887 09 |
,942 92 |
,96311 |
,972 95 |
,978 61 |
,982 21 |
,984 68 |
,986 46 |
,987 80 |
2,7 |
2,8 |
,890 81 |
,946 30 |
,966 07 |
,975 59 |
,981 00 |
,984 42 |
,986 74 |
,988 40 |
,989 64 |
2,8 |
2,9 |
,894 30 |
,949 41 |
,968 75 |
,977 94 |
,983 10 |
,986 33 |
,988 51 |
,990 05 |
,991 20 |
2,9 |
3,0 |
0,897 58 |
0,952 27 |
0,971 16 |
0,980 03 |
0,984 95 |
0,988 00 |
0,990 03 |
0,991 46 |
0,992 52 |
3,0 |
3,1 |
,900 67 |
,954 90 |
,973 35 |
,981 89 |
,986 57 |
,989 44 |
,991 34 |
,992 67 |
,993 64 |
3,1 |
3,2 |
,903 59 |
,957 33 |
,975 33 |
,983 55 |
,988 00 |
,990 70 |
,992 47 |
,993 69 |
,994 59 |
3,2 |
3,3 |
,906 34 |
,959 58 |
,977 13 |
,.985 03, |
,989 26 |
,991 80 |
,993 44 |
,994 57 |
,995 39 |
3,3 |
3,4 |
,908 95 |
,961 66 |
,978 77 |
,986 36 |
,990 37 |
,992 75 |
,994 28 |
,995 32 |
,996 06 |
3,4 |
3,5 |
0,911 41 |
0,963 58 |
0,980 26 |
0,987 55 |
0,991 36 |
0,993 59 |
0,995 00 |
0,995 96 |
0,996 64 |
3,5 |
3,6 |
,913 76 |
,965 38 |
,981 62 |
,988 62 |
,992 23 |
,994 32 |
,995 63 |
,996 51 |
,997 13 |
3,6 |
3,7 |
,915 98 |
,967 05 |
,982 86 |
,989 58 |
,993 00 |
,994 96 |
,996 17 |
,996 98 |
,997 54 |
3,7 |
3,8 |
,918 09 |
,968 60 |
,984 00 |
,990 45 |
,993 69 |
,995 52 |
,996 64 |
,997 38 |
,997 89 |
3,8 |
3,9 |
,920 10 |
,970 05 |
,985 04 |
,991 23 |
,994 30 |
,996 01 |
,997 05 |
,997 73 |
,998 19 |
3,9 |
4,0 |
0,922 02 |
0,971 41 |
0,986 00 |
0,991 93 |
0,994 84 |
0,996 44 |
0,997 41 |
0,998 03 |
0,998 45 |
4,0 |
4,2 |
,925 60 |
,973 86 |
,987 68 |
,993 15 |
,995 75 |
,997 16 |
,997 98 |
,998 50 |
,998 85 |
4,2 |
4,4 |
,928 87 |
,976 02 |
,989 12 |
,994 15 |
,996 49 |
,997 72 |
,998 42 |
,998 86 |
,999 14 |
4,4 |
4,6 |
,931 86 |
,977 92 |
,990 34 |
,994 98 |
,997 08 |
,998 15' |
,998 76 |
,999 12 |
,999 36 |
4,6 |
4,8 |
,934 62 |
,979 62 |
,991 40 |
,995 68 |
,997 56 |
,998 50 |
,999 02 |
,999 32 |
,999 51 |
4,8 |
5,0 |
0,937 17 |
0,981 13 |
0,992 30 |
0,996 25 |
0,997 95 |
0,998 77 |
0,999 22 |
0,999 47 |
0,999 63 |
5,0 |
5,2 |
,939 52 |
,982 48 |
,993 09 |
,996 74 |
,998 27 |
,998 99 |
,999 37 |
,999 59 |
,999 72 |
5,2 |
5,4 |
,941 71 |
,983 69 |
,993 78 |
,997 15 |
,998 53 |
,999 17 |
,999 50 |
,999 68 |
,999 78 |
5,4 |
5,6 |
,943 75 |
,984 78 |
,994 37 |
,997 50 |
,998 75 |
,999 31 |
,999 59 |
,999 75 |
,999 83 |
5,6 |
5,8 |
,945 65 |
,985 77 |
,994 90 |
,997 80 |
,998 93 |
,999 42 |
,999 67 |
,999 80 |
,999 87 |
5,8 |
6,0 |
0,947 43 |
0,986 66 |
0,995 36 |
0,998 06 |
0,999 08 |
0,999 52 |
0,999 73 |
0,999 84 |
0,999 90 |
6,0 |
6,2 |
,949 10 |
,987 48 |
,995 77 |
,998 28 |
,999 20 |
,999 59 |
,999 78 |
,999 87 |
,999 92 |
6,2 |
6,4 |
,950 66 |
,988 22 |
,996 14 |
,998 47 |
,999 31 |
,999 66 |
,999 82 |
,999 90 |
,999 94 |
6,4 |
6,6 |
,952 14 |
,988 90 |
,996 46 |
,998 63 |
,999 40 |
,999 71 |
,999 85 |
,999 92 |
,999 95 |
■ 6,6 |
6,8 |
,953 52 |
,989 53 |
,996 75 |
,998 78 |
,999 48 |
,999 75 |
,999 87 |
,999 93 |
,999 96 |
6,8 |
7,0 |
0,954 83 |
0,990 10 |
0,997 Ol |
0,998 90 |
0,999 54 |
0,999 79 |
0,999 90 |
0,999 94 |
0,999 97 |
7,0 |
7,2 |
,956 07 |
,990 63 |
,997 24 |
,999 01 |
,999 60 |
,999 82 |
,999 91 |
,999 95 |
,99997 |
7,2 |
7,4 |
,957 24 |
,991 11 |
,997 45 |
,999 11 |
,999 64 |
,999 84 |
,999 93 |
,999 96 |
,999 98 |
7,4 |
7,6 |
,958 36 |
,991 56 |
,997 64 |
,999 20 |
,999 69 |
,999 86 |
,999 94 |
,999 97 |
,999 98 |
7,6 |
7,8 |
,95941 |
,991 98 |
,997 81 |
,999 27 |
,999 72 |
,999 88 |
,999 95 |
,999 97 |
,999 99 |
7,8 |
8,0 0,960 42 0,992 37 0,997 96 0,999 34 0,999 75 0,999 90 0,999 96 0,999 98 0,999 99 8,0
r t \ |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 | |
0,0 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,500 00 |
0,0 |
0,1 |
,538 84 |
,538 93 |
,539 00 |
,53907 |
,539 12 |
,539 17 |
,539 21 |
,539 24 |
,539 28 |
0,1 |
0,2 |
,577 26 |
,577 44 |
,577 59 |
,577 71 |
,577 82 |
,577 92 |
,578 00 |
,578 07 |
,578 14 |
0,2 |
0,3 |
,614 84 |
,615 11 |
,615 34 |
,615 54 |
,615 71 |
,615 85 |
,615 98 |
,616 09 |
,61619 |
0,3 |
0,4 |
,651 22 |
,651 59 |
,651 91 |
,652 17 |
,652 40 |
,652 60 |
,652 78 |
,652 93 |
,653 07 |
0,4 |
0,5 |
0,686 05 |
0,686 54 |
0,686 94 |
0,687 28 |
0,687 58 |
0,687 83 |
0,688 06 |
0,688 26 |
0,688 43 |
0,5 |
0,6 |
,719 07 |
,719 67 |
,720 17 |
,720 59 |
,720 95 |
,721 27 |
,721 55 |
,721 79 |
,722 01 |
0,6 |
0,7 |
,750 06 |
,750 77 |
,751 36 |
,751 87 |
,752 30 |
,752 68 |
,753 01 |
,753 30 |
,753 56 |
0,7 |
0,8 |
,778 85 |
,779 68 |
,780 37 |
,780 96 |
,781 46 |
,781 90 |
,782 29 |
,782 63 |
,782 93 |
0,8 |
0,9 |
,805 36 |
,806 30 |
,807 09 |
,807 76 |
,808 33 |
,808 83 |
,809 27 |
,809 65 |
,81000 |
0,9 |
109