IMM fM/WWKO
rn tNUHKHtl WyH/M
• . a.-,.,,), ;/. *.//ł v. j,—> f
1 * //. t •< AfA* , .
/ |
11 1 |
2 |
4 |
<* §U*M | ||
Ci |
__ |
Uw/MUprMUA 7Juixuu u rtUt/.tr/jL U u* Ufy u* u-U; Ht\f. - •
W r'./ '<»«uoMi pnaRBg UKatodować 'Aykantyetywwc i»icukutaU * 6ff*w:jx , ęrr#jmxjtii jkwwuoc
*7»r/. uzj^inuU •/yaj&tr* wnioski ięar/ztizM.
,n+l
3C *r 1
I. Dany jest ciąg o wyrazach cn = oraz obliczyć jego granicę.
. Zbadać moiwconiczność tego ciąg -
2. Sformułować twierdzenie Dart>otix i wykorzystać do uzasadnienia, ze równanie 5x — x“ - 2x^ =1 m2 dokładnie trzy rozwiązania. Wskazać przedział} długości i, •a* których znajdują się te rozwiązania.
3. Napisać równanie stycznej do wykresu funkcji f(x) = e x • sin(3x - -> , w punkcie o odciętej xq =0.
-i. Wyznaczyć najmniejszą wartość różnie}' liczby rzeczywistej dodatniej i logarytmu naturalnego liczby cztery raz>' większej. | |
5. Obliczyć całkę : |
J v x • lnx dx. Zastosować całkowanie przez części. |
6. Obliczyć całkę: |
,sin2x Zastosować podstawienie cosx = t. 4+cosx |
Jołania Sulkowska