uzyskamy
r(-i)i+,«„ |
(—1)1+“ M12 |
(“i)1+3 |
3 |
‘ 6 |
0 | |
ltijCA) = | (-I)" ''A/,! |
(~l)2'' 2M 22 |
<-I)M |
A/ T} |
“3 |
3 | |
(-l)^'2A/32 |
(-1)3"3 |
**33 |
-1 |
— 3 |
»
Ponieważ det(A)--6, więc
A"'1 -
1 - ^acij(A)7'
6 |
- 3 -f |
] |
_ i 2 |
1 6 | |
0 |
3 -3 |
=: |
0 |
J. |
_ i |
0 |
0 2 |
0 |
0 |
T >_ |
I
Sprawdźmy:
r 6 |
— 3 |
-f |
‘l 1 |
2 |
o o* | ||
0 |
3 |
-3 |
0 2 |
3 |
- |
0 |
1 0 |
L 0 |
0 |
2 |
0 0 |
3 |
0 |
0 i |
(A“!A =I;ł)
n i |
2* |
6 -3 -li |
"! 0 |
0' |
AA'1 = | 0 2 6 |
3 |
0 3 -3 = |
0 i |
0 |
[o 0 |
3 |
0 0 2j |
0 0 |
1 |
(A A-1 =I3)
Macierz B
dct(B) - -2, |
adj(B) = |
-i i -r 1 I —3 |
B~‘ as! 2 |
‘i-i r -1-1 3 |
! -3 5 |
-j 1 C'-i |
Przykład 1.12
Na podstawie rozkładu na czynniki trójkątne, obliczyć odwrotności macierzy:
‘2 |
6 |
2 |
*4 |
6 |
2 ’ | ||
A = |
1 |
6 |
7 |
B |
6 |
18 |
9 |
0 |
1 |
a i |
2 |
9 |
21 |
Rozwiązanie
Macierz A. Ponieważ
'2 0 0" |
'i 3 r |
"2 6 2" | |
i 3 0 |
0 1 2 |
= |
i 6 7 |
0 1 1 |
r0 0 1 |
0 1 3^ | |
II7' |
G |
=3 |
A |
oraz
r i |
i i r | ||
2 Ai2 *13 |
2 i 0 |
2 fi 6 | |
() | A'23 |
0 3 1 |
*1- ~> H~l = |
0 i _ 2. 3 3 |
0 0 i |
0 0 |
0 0 1 |
H 1 II
‘] 0 |
>’I2 |
-v13 >;23 |
"i 0 |
3 r 1 2 |
= 13 |
^-1 -> G = |
i 0 |
-3 1 |
5" -2 |
0 |
0 |
J |
0 |
0 ! |
0 |
0 |
! |
I-I-1 G
więc
1 -3 5' |
o o" | |||
> II O ►•W II |
0 i -2 |
_i i o 6 3 | ||
0 0 l |
i -i- 1 | |||
L J |
.63 |
- |
Macierz B (symetryczna). Skoro
~2 |
0 |
0" |
"o |
3 |
f |
"4 |
6 |
2 | |
3 |
3 |
0 |
0 |
3 |
2 |
= |
6 |
18 |
9 |
1 |
2 |
4 |
0 |
0 |
4 |
2 |
9 |
21 | |
R7' |
R |
B |
oraz
2 *12 *13 |
2 3 r |
1 _1 i" 2 2 8 | |
0 i -'•'23 0 o \ |
1 o o o w t to |
II ii V il |
i o o o •->!-1 £» i— o\— |
R1
R