1.1 A gas ał 20°C inay be rarefied if il conlains less thun K)1* molecules per min'. If A\ogadro’s number is 6j023E23 molecules |ier mole. wliat air pressure does ihis represeni?
Soliition: Hic mass of one n>olecule of air inay be oomputed as
m
_ Molecular weighi __28.97 mol
Avogadro’s number 6.023E23 molecule s/g-mol
= 4.81E-23 g
Tlien thedensiiy of air coniaining 10 molecules per min' is. in SI miils.
=(
I013
molecules V
4.8IE-23
A
;ule )
molecule
-4.8IE-I1
-1--4.8IE-5
mm m
Finał ly. from ilie perfect gas law. Eq. (1.13). ai 20°C - 293 K. we obiain ilie pressure: p = /?RT -1 4.8IE-5 |! 287 |<293 K)= 4.0 Pa Ans.
1.2 The eanh’s aimospłiere can ł>e modeled as a uniform layer of air of ihickness 20 km and averagedeihiiy 0.6 kg/m' (see TaWe A-6). Use ihese values toesiimaie ilie loial mass and total number of molecules of air in ihe eniire ulinosphere of Ute earth.
Solulioii: Lei R* Iie ilie earih‘s radius « 6377 km. Hien ihe loial mass of air in ilie
almosphere is
m, - J />dVol-/>Ji#(Air Vol)» /?44<,4^R3(Air ihickness)
-(0.6 kg/m' i4^(6.377E6 m)2(20E3 m) “ 6.1 LIS kg Am.
I)i\ kling by lite mass of one molecule •* 4.8E-23 g (see Prób. 1.1 above). we obiain ilie uwal number of molecules in ilie earth’s atmosphere:
N,
m( aimospłiere)___6.1E2I grams
m(one molecule) 4.8E-23 gm/molecule
1.3 E44 nrolce ul CS Ans.