Temat: Powstawanie i wytwarzanie w zastosowaniach technicznych ultradźwięków
Temat: Powstawanie i wytwarzanie w zastosowaniach technicznych ultradźwięków.
Ultra dźwięki - fale akustyczne o częstotliwości wyższej niż 16 kHz ( tj. przekraczającej górny próg słyszalności dla człowieka ) i niższej od 100 Mhz ( hiperdźwięk ). W naturze ultradźwięki emitowane są przez niektóre ssaki ( m.in. nietoperze i delfiny ) i wykorzystywane przez nie do echolokacji.
Antologiczne zastosowanie znajdują ultradźwięki w technice. Ponadto, ze względu na silną zależność właściwości rozchodzenia się ultradźwięków w danym ośrodku od jego budowy, słóżą one do badania budowy struktury innych ciał, m.in. organizmów żywych ( ultrasonografia ). Zogniskowanych wiązek ultradźwięków używa się do odrywania ciał ciał stałych z bardziej elastycznego podłoża ( usuwanie kamienia nazębnego, rozbijanie kamieni nerkowych, oczyszczanie powierzchni metali przed lutowaniem itd. )
Energia drgań ultradźwięków może być też wykożystana do rozpylania aerozoli i emulsji, a nawet do spawania.
Dźwięki o częstotliwości drgań większej niż 20 000 Hz nazywamy ultradźwiękami. Wytworzyć je można korzystając ze zjawiska magnetostrykcji albo z odwrotnego zjawiska piezoelektrycznego.
Zjawisko magnetostrykcji zostało wykryte w 1847 r. przez J. P. Joule'a, a polega na tym, że pręty ciał ferromagnetycznych , np. żelaza czy niklu, doznają podczas magnesowania zmian długości. Pręt z żelaza lub niklu umieszczony w cewce wytwarzającej drgania pola magnetycznego wielkiej częstotliwości, jest pobudzany do drgań podłużnych z częstotliwością drgań pola. Drgania te są szczególnie silne w przypadku rezonansu, tj. gdy częstotliwość zmian pola pokrywa się z częstotliwością własną pręta, określoną własnościami pręta zgodnie z wzorem ( Rys. 1 ).
Energia drgań jest odprowadzona z końca pręta z przekroju poprzecznego. Za pomocą tej metody można wytworzyć drgania nawet o częstotliwości 60 000 Hz, przy czym długość pręta niklowego wynosi w tym przypadku zaledwie 4 cm. Zjawisko piezoelektryczne, odkryte przez braci Curie ( 1881 ) r. występuje w takich kryształach, jak turmalin, kwarc, sól Seignette'a i polega na tym, że przy deformacji, np. zgniataniu w określonych kierunkach, występują na końcach osi polarnej kryształu ładunki elektryczne przeciwnego znaku. Przy tzw. Odwrotnym, którego kierunek pokrywa się z jego osią biegunową, doznaje deformacji mechanicznej.
Płytki kryształów używane do wytwarzania ultradźwięków wycina się prostopadle do osi biegunowej kryształu. Powierzchnie płytek pokrywa się cienkimi warstwami metalu stanowiącymi dwie metalowe elektrody. Płytkę umieszczamy następnie w pojemniku z olejem, którego zadaniem jest przekazywanie ultradźwięków do badanego obiektu, oraz chłodzenie. Przyłożenie zmiennego napięcia elektrycznego do elektrod metalowych pobudza kryształ do drgań sprężystych, których amplituda osiąga maksymalną wartość, gdy częstotliwość zmian napięcia elektrycznego pokrywa się z częstotliwością własną drgań mechanicznych płytki.
Ultradźwięki są silnie tłumione przez powietrze. Energia, jaką przy tej samej amplitudzie drgań daje płytka kwarcowa drgając w oleju, jest 3000 razy większa, niż gdy drga ona w powietrzu. Powodem tego jest znacznie większy opór stawiany drganiom przez olej w porównaniu z powietrzem. Przy zastosowaniu płytek piezokwarcowych można uzyskać częstotliwości w granicach od kilkudziesięciu tysięcy do kilkudziesięciu milionów herców. Przy zastosowaniu płytek turmalinu, które dają wyższe harmoniczne, uzyskuje się ultradźwięki o częstotliwości do 300 milionów herców. Gęstość energii przekazywana płytce w jednostce czasu może osiągnąć wartość do 10 W/cm2, co przewyższa o koło 100 razy natężenie dźwięku orkiestry. Amplituda drgań ultradźwiękowych jest bardzo mała, przyspieszenie zaś nawet 105 razy przewyższać przyspieszenie ziemskie.
Ultradźwięki wywołują ciekawe efekty fizyczne i fizjologiczne: tak np. ciecze, które nie mieszają się z sobą, poddane działaniom ultradźwięków tworzą w ciągu kilku minut emulsję ( np. woda i rtęć ). Termometru zanurzonego w oleju, w którym rozchodzą się fale ultradźwiękowe, nie można dotknąć ręką, ponieważ doznaje się oparzenia pod działaniem ultradźwięków, mimo że termometr wskazuje niską temperaturę.
Ultradźwięki zabijają drobnoustroje i niektóre prostsze zwierzęta, np. żaby, ryby. Warto tu przypomnieć pewną ciekawostkę przyrody: nietoperze reagują na częstotliwości do 100 kHz, a ponadto korzystają z ultradźwięków w celu określenia położenia przeszkody. Wysyłają one impulsy ultradźwiękowe o częstotliwości 35 do 70 kHz i czasie trwania rzędu 1/100s, a następnie nasłuchują impulsów odbitych od przeszkody. Z opóźnienia czasowego ( podobnie jak przy zastosowaniu radaru ) nietoperze oceniają położenie przeszkody. Studiowanie podobnych „aparatur” w przyrodzie żywej celem wykorzystania w technice jest przedmiotem nowej nauki - bioniki.
Langevin w 1918 roku po raz pierwszy zastosował ultradźwięki do pomiarów głębokości morza. Użycie ultradźwięków do tego typu pomiarów jest bardzo korzystne, ponieważ dają one możliwości wysyłania energii promieniowania w postaci wąskiego zorientowanego strumienia. Umożliwiają one wykrycie gór lodowych i ławic ryb. Elektromagnetyczne fale radarowe nie znajdują tu zastosowania z powodu zbyt silnej absorbcji w słonej wodzie morskiej. Ultradźwięki znalazły również zastosowanie w tzw. Defektoskopii do badań uszkodzeń nawet bardzo grubych odlewów, których już nie można prześwietlić promieniami X.
Bibliografia:
1. Jerzy Massalski, Michalina Massalska
„Fizyka dla inżynierów”
Wydawnictwa Naukowo Techniczne
Warszawa 1973
2. Wielka Internetowa Encyklopedia Multimedialna. Wersja 2.03
Wygenerowano: 04-10-2003 07:18:39