plik


ÿþ (A - G) n m ij g(t) = g(t1, . . . , tm) = ci (tj)± i=1 j=1 t = (t1, . . . , tm) tj > 0 j = 1, . . . , m ci > 0 ±ij " R j = 1, . . . , m i = 1, . . . , n Roz(A - G) x1 . . . xn > 0 ´1, . . . , ´n » = ´1 + . . . + ´n n n » i i xi e" »» (x )´ , Roz(A - G) ´i i=1 i=1 i 00 = 1 (x )0 = 1 0 Roz(A - G) ´1 = . . . = ´n = 0 » = 0 n ´i xi = xi , i = 1, . . . , n, » > 0. » i=1 t = (t1, . . . , tm) g0, g1, . . . , gk ñø ôø ôøg0(t) ’! min ôø òø (CGP ) ôøg1(t) d" 1, . . . , gk(t) d" 1, ôø ôø óø t1, . . . , tm > 0, (CGP ) k + 1 n m ij g(t) = g(t1, . . . , tm) = ci (tj)± . i=1 j=1 l1 lm ul(t) = clt± . . . t± . 1 m (CGP ) ñø ôø 0 ôøg0(t) = u1(t) + . . . + un (t) ’! min ôø ôø ôø ôø ôø ôø òøg (t) = un (t) + . . . + un (t) d" 1, 1 +1 0 1 (CGP ) ôø. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ôø ôø ôø ôøgk(t) = un +1(t) + . . . + un (t) d" 1, ôø ôø k-1 k ôø óø t1, . . . , tm > 0, nk = p. p ul (A-G) Roz(A - G) (CGP ) ñø p k ôø cj ôøv(´) = v(´1, . . . , ´p) = ´j »i(´)» (´) i ôø ’! max ôø ´j ôø ôø ôø j=1 i=1 ôø ôø ôø ôø ôø ôø ôø ôø´1 + . . . + ´n = 1, ôø ôø 0 ôø òø ±11´1 + . . . + ±p1´p = 0, (DCGP ) ôø. . . . . . . . . . . . . . . . . . . . . , ôø ôø ôø ôø± ´1 + . . . + ±pm´p = 0, ôø ôø 1m ôø ôø ôø ´i > 0, i = 1, . . . , n0, ôø ôø ôø ôø ôø(´l > 0 ni-1 + 1 d" l d" ni ´l = 0 ni-1 + 1 d" l d" ni), ôø ôø ôø óø »i(´) = ´n +1 + . . . + ´n , i = 1, . . . , k. i-1 i (CGP ) v(´) (DCGP ) (DCGP ) (´1, . . . , ´p) " Rp (DCGP ) (DCGP ) (DCGP ) (DCGP ) (DCGP ) v (DCGP ) (CGP ) t ’! t± ± " (0, 1) n m ij g(t1, . . . , tm) = ci (tj)± i=1 j=1 h(x1, . . . , xm) Rm j tj = ex , tj > 0 j = 1, . . . , m. n m ±ij xj j=1 h(x1, . . . , xm) = cie . i=1 ñø ôø ôøg0(t) ’! min ôø òø (CGP ) ôøg1(t) d" 1, . . . , gk(t) d" 1, ôø ôø óø t1, . . . , tm > 0, ñø ôø ôøh0(x) ’! min ôø òø (CGP ) ôøh1(x) - 1 d" 0, . . . , hk(x) - 1 d" 0, ôø ôø óø x " Rm. x ’! ex R (CGP ) (CGP ) t = (t 1, . . . , t m) (CGP ) i x = (x 1, . . . , x m) (CGP ) t i = ex i = 1, . . . , m t (CGP ) ´ (DCGP ) g0(t) e" v(´) . (CGP ) t (CGP ) (CGP ) (DCGP ) ´ g0(t ) = v(´ ), ui(t ) , i = 1, . . . , n0, g0(t ) ´i = »j(´ )ui(t ), i = nj-1 + 1, . . . , nj, j = 1, . . . , k, nk = p. t (CGP ) ´ (DCGP ) l = 1, . . . , k »l > 0 0 < gl(t) d" 1 l (gl(t))» d" 1 k k l l g0(t) e" g0(t) (gl(t))» = [u1(t) + . . . + un (t)] (gl(t))» = 0 l=1 l=1 k n0 k i l i l = ´1 u1(t) + . . . + ´n un0 (t) (gl(t))» e"(A-G) (u (t))´ (gl(t))» = 0 ´1 ´n0 ´i l=1 i=1 l=1 (A - G) (´1, . . . , ´p) n0 ´1, . . . , ´n > 0 ´i = 1 0 i=1 n0 m k n0 ±ij ´i i i l i=1 g0(t) e" (c )´ (tj) (un +1(t) + . . . + un (t))» e"Roz(A-G) l-1 l ´i i=1 j=1 l=1 n0 m k ´nl-1+1 ´nl n0 unl-1+1(t) unl (t) ci i ±ij l ´i i=1 e" (´ )´ (tj) (»l)» · . . . · = ´nl-1+1 ´nl i i=1 j=1 l=1 k Roz(A - G) gi i = 1, . . . , k (´1, . . . , ´p) ´n +1, . . . , ´n i-1 i i = 1, . . . , k n0 m k nl nl ´ns m k n0 ±ls´l cns ´i ci i ±ij l l=1 s=nl-1+1 i=1 g0(t) e" (´ )´ (tj) (»l)» · (tj) = ´ns i i=1 j=1 l=1 s=nl-1+1 j=1 p k m p ci i ±ij ´i l i=1 = (´ )´ · (»l)» · (tj) . i i=1 l=1 j=1 (´1, . . . , ´p) p ±ij´i = 0, j = 1, . . . , m i=1 (t1, . . . , tm) g0 g0(t) e" v(´). t = (t 1, . . . , t m) (CGP ) (CGP ) x = (x 1, . . . , x m) x i = ln t i , i = 1, . . . , m. » = (» 1, . . . , » k) » i e" 0 i = 1, . . . , k » i (hi(x ) - 1) = 0 i = 1, . . . , k k (h0) x (x ) + » i (hi) x (x ) = 0 j = 1, . . . , m i=1 j j j tj = ex j = 1, . . . , m "hi "hi "ti "gi j = = ex , i = 0, 1, . . . , k, j = 1, . . . , m "xj "tj "xj "tj j ex > 0 j = 1, . . . , m k (g0) t (t ) + » i (gi) t (t ) = 0 j = 1, . . . , m i=1 j j t j > 0 j = 1, . . . , m k t j(g0) t (t ) + » i t j(gi) t (t ) = 0 j = 1, . . . , m i=1 j j lj ul(t) = cl m (tj)± j=1 n0 t j(g0) t (t ) = ±ljul(t ), j = 1, . . . , m, j l=1 ni t j(gi) t (t ) = ±ljul(t ), j = 1, . . . , m, i = 1, . . . , k. j l=ni-1+1 n0 k nr ±ljul(t ) + » r±rjur(t ) = 0, j = 1, . . . , m. l=1 r=1 l=nr-1+1 n0 g0(t ) = ul(t ) > 0 l=1 n0 k nr ul(t ) ±lj g0(t ) + » r±rj ur(t ) = 0, j = 1, . . . , m. ) g0(t l=1 r=1 l=nr-1+1 ´ ul(t ) , l = 1, . . . , n0, g0(t ) ´l = » rul(t ) , l = nr-1 + 1, . . . , nr, r = 1, . . . , k. g0(t ) ´l > 0 l = 1, . . . , n0 r = 1, . . . , k ´i > 0 » r > 0 ´i > 0 » r > 0 nr-1 + 1 d" i d" nr » r e" 0 n0 n0 ul(t ) ´l = = 1. g0(t ) l=1 l=1 » r »r(´ ) (DCGP ) nr nr ) »r(´ ) = ´q = » r uq(t ) = » r gr(t ), r = 1, . . . , k. g0(t g0(t ) q=nr-1+1 q=nr-1+1 » rgr(t ) = » r, r = 1, . . . , k. ul(t ´l = » r g0(t ) = » r gr(t )ul(t ) = »r(´ )ul(t ), l = nr-1 + 1, . . . , nr, r = 1, . . . , k. ) g0(t ) ´ (DCGP ) ´l i = 1, . . . , p (A - G) k Roz(A - G) (»r(´ ) = 0 (" gr(t ) = 1) r r = 1, . . . , k (gr(t ))» (´ ) = 1 r = 1, . . . , k g(t ) = v(´ ). ´ (DCGP ) (CGP ) (CGP ) (DCGP ) (CGP ) (CGP ) ´ (DCGP ) (A - G) k Roz(A - G) (DCGP ) ´ (DCGP ) (CGP ) (CGP ) (DCGP ) (CGP ) (DCGP ) ñø " ôø ôøg0(x, y, z) = x + y-2z-1 ’! min ôø òø (CGP )1 ôøg1(x, y, z) = x-1y2 + x-1z2 d" 1, ôø ôø óø x, y, z > 0. p = 4 1 1 u1(x, y, z) = x2 c1 = 1 ±11 = ±12 = 0 ±13 = 0 2 u2(x, y, z) = y-2z-1 c2 = 1 ±21 = 0 ±22 = -2 ±23 = -1 u3(x, y, z) = x-1y2 c3 = 1 ±31 = -1 ±32 = 2 ±33 = 0 u4(x, y, z) = x-1z2 c4 = 1 ±41 = -1 ±42 = 0 ±43 = 2. (CGP )1 ñø -´1 -´2 -´3 -´4 3 ôøv(´) = ´1 ´2 ´3 ´4 (´3 + ´4)´ +´4 ’! max ôø ôø ôø ôø ôø ôø ôø ôø´ + ´2 = 1, ôø ôø ôø ôø11 òø ´1 - ´3 - ´4 = 0, 2 (DCGP )1 ôø-2´2 + 2´3 = 0, ôø ôø ôø ôø-´2 + 2´4 = 0, ôø ôø ôø ôø ôø´1, ´2 > 0, ôø ôø ôø óø(´ , ´4 > 0) (´3 = ´4 = 0). 3 (DCGP )1 (DCGP ) 1 1 1 (´1, ´2, ´3, ´4) = (3, , , ). 4 4 4 8 7 3 1 1 1 v(´1, ´2, ´3, ´4) = v(3, , , ) = 24 3- 8 . 4 4 4 8 (CGP )1 " u1(x ,y ,z ) u1(x ,y ,z ) 3 x = ´1 = = = , 7 3 4 g0(x ,y ,z ) v(´1 ,´2 ,´3 ,´4 ) - 4 8 2 3 u2(x ,y ,z ) u2(x ,y ,z ) (y )-2(z )-1 1 = ´2 = = == , 7 3 4 g0(x ,y ,z ) v(´1 ,´2 ,´3 ,´4 ) - 4 8 2 3 1 3 = ´3 = (´3 + ´4)u3(x , y , z ) = (x )-1(y )2, 4 8 1 3 = ´4 = (´3 + ´4)u4(x , y , z ) = (x )-1(z )2. 8 8 (CGP )1 1 5 1 1 1 1 7 3 (x , y , z ) = (2- 2 34 , 24 38 , 2- 4 38 ), g0(x , y , z ) = 24 3- 8 .

Wyszukiwarka