ÿþM A S D i s t o r t i o n
R e v . 4 . D e c . 8 . 2 0 0 5
Y o u c a n b u i l d e i t h e r t h e M X R D i s t o r t i o n + o r t h e D O D O v e r d r i v e 2 5 0 i n t h i s b o a r d . T r y d i f f e r e n t k i n d s o f
d i o d e s f o r c l i p p i n g . T h e s e c i r c u i t s a r e v e r y s i m i l a r , s o m u c h t h a t t h e y c a n b e c o n s t r u c t e d a r o u n d t h e
s a m e p r i n t e d c i r c u i t b o a r d . U s e t h e p a r t s l i s t t o s u b s t i t u t e w i t h t h e v a l u e s f o r t h e c i r c u i t y o u c h o o s e t o
b u i l d . O f f b o a r d c o m p o n e n t s e x c e p t f o r t h e p o t e n t i o m e t e r s a r e n o t s h o w n o n t h e l a y o u t . R e g i s t e r e d
t r a d e m a r k s a r e p r o p e r t y o f t h e i r o w n e r s .
R 7 R 1 0
R 7
R 1 0
1
D R I V E L E V E L
D R I V E
L E V E L
R 6 C 4 C 7
R 6
C 4
C 7
G N D
G N D
O U T
O U T
½
I N
I
N
I C 1
I
C 1
+ 9 V
+ 9 V
0
0 ½ 1 1 ½ 2
L A Y O U T R E A D Y T O T R A N S F E R
M X R P A R T S L I S T D O D P A R T S L I S T
R e s i s t o r s C a p a c i t o r s R e s i s t o r s C a p a c i t o r s
R 1 - C 1 - 1 µ F R 1 - C 1 - 1 0 µ F
R 2 - 1 M C 2 - 0 . 0 1 µ F R 2 - 2 0 k C 2 - 0 . 0 1 µ F
R 3 - 1 M C 3 - 0 . 0 0 1 µ F R 3 - 2 0 k C 3 -
R 4 - 1 M C 4 - 0 . 0 4 7 µ F R 4 - 1 M C 4 - 0 . 0 5 µ F
R 5 - 1 0 k C 5 - 1 0 p F R 5 - 1 0 k C 5 -
R 6 - 4 k 7 ( 4 . 7 k ) C 6 - 1 µ F R 6 - 4 7 k C 6 - 1 0 µ F
R 7 - 5 0 0 k R e v - l o g . p o t . C 7 - 0 . 0 0 1 µ F R 7 - 5 0 0 k R e v . L o g . p o t . C 7 - 0 . 0 0 1 µ F
R 8 - 1 M I C s R 8 - 1 M I C s
R 9 - 1 0 k I C 1 - 7 4 1 R 9 - 1 0 k I C 1 - 7 4 1
R 1 0 - 5 0 k l o g . p o t . R 1 0 - 1 0 0 k l o g . p o t
S c h e m a t i c
N O T E S :
T h e o r i g i n a l D i s t + u s e d 5 0 0 k
R e v L o g a n d 5 0 k L o g p o t s f o r
A C R 2
+
d i s t o r t i o n a n d v o l u m e c o n t r o l s
A D A P T O R
9 v
r e s p e c t i v e l y . A n a d v i s a b l e m o d i s
t o u s e 1 0 0 k L o g f o r v o l u m e
C 1 R 3 R 4
c o n t r o l , l i k e t h e D O D . ( T h a n k s f o r
t h e t i p F r e t W i r e )
I N P U T
C 2 R 5
3 7
R 9
6
I C 1
C 6
O U T P U T
2 4
R 6 C 4
C 3 R 7 D 1 D 2 C 7 R 1 0
C 5
R 8
1
5
2
3
8
9
2
3
2
4
5
D 1
D
C 3
C
C 2
C
C 5
C
R 5
R
R 2
R
R 3
R
R 8
R
R 9
R
D 2
D
R 4
R
1
6
C 1
C
C 6
C
L a y o u t a n d p r e s e n t a t i o n b y F r a n c i s c o P e ñ a 2 0 0 1 - 2 0 0 3 ® .
A l l r i g h t s r e s e r v e d . A u t h o r i z a t i o n f o r p e r s o n a l u s e o n l y ,
a n y c o m m e r c i a l u s e i s f o r b i d d e n .
P e r m i s s i o n f o r p o s t i n g / s e r v i n g l i m i t e d t o
h t t p : / / w w w . t o n e p a d . c o m
P e r m i s s i o n r e f u s e d f o r p o s t i n g f r o m o t h e r s i t e s .
R
R
O
O
T
T
S
S
I
I
D
D
S
S
A
A
M
M
1
1
0
0
0
0
2
2
P
P
F
F
Wyszukiwarka
Podobne podstrony:
dist mem gen v6 2 readmedist READMEdist READMEbinomial distchisquare distt distSnort FreeBSD distPVector distinteger distpoisson distgeometric distPVector distexponential distdistdistdist READMEf distwięcej podobnych podstron