61706

61706



151 PROMIENIOWANlii CI AŁA. DOSKONALE C7.ARNF.GO

CIAŁO DOSKONALE CZARNE-OALO POCIILANIAJA.CE CALE PROMIENIOWANIE KTÓRE NA NIE PADA (W 100% ABSORBUJE ŚWIATŁO)

Kf0-CAŁKOWITA ZDOLNOŚĆ EMISYJNA ClALA. ZALEŹ.Y O!) TEMPERATURY. JEST TO ILOŚĆ ENERGII WYSYŁANEJ W JEDNOSTCE CZASU PRZEZ JEDNOSTKĘ POWIERZCHNI CI Al .A O DANEJ 'lEMPHRAITJRZE T NIEZALEŻNIE OD DŁUGOŚCI FALI PROMIENIOWANIA. E(T}=J/[S»(a do 2)]

BfA,T>WIDMOW'A (SPEKTRALNA.) ZDOLNOŚĆ EMISYJNA .JEST TO ILOŚĆ rJNKKGi! WYSYŁANEJ W JEDNOSTCE CZASU PRZEZ JEDNOSTKĘ POWIERZCHNI CLALA 0 DANEJ TEMPERATURZE T W PRZEDZIALE (K./.+-A>.'i 5E(JvlT)l~J/!S*(tn clo PMm)

~(T)~ \ E0-.T,) dL 16) CZĄSTKĄ O MASIE ma PORUSZAJĄCA SIT. Z PRĘDKOŚCIĄ V ZWIĘKSZA SWA MASĘ TAK ŻE mo'iu-3.'S. Z JAKA V PÓRUSZŻ STĘ CZĄSTKA? "

mr=mn/Vi t-Ęl do ")| mcw:n;-Vri-(Ó do 2)1    mcAji:-="■/[ j-{(V do2)/(C dc>2}>)    (nłO do

do 2)=HCV do 2'AC do 2)J 9/2>=!-{(V do 2)/{C do 2)]    da 2)]/23+(C dc 2)={V do

2)    V-Vf(Cdo2)<9,{C<to21)/2.'»J    V-C*Ąl-{P/2J)H^¥0 17) PRZESUNIECIE COMnONOWSKTE FALI.

A>.=X‘-X^(rn(!fC)]*(l HxMJ)VVA(L<4>ł6) -WZÓR NA ZMIANĘ DŁUGOŚCI SALI ROZPROSZONEJ /    \

ENERGIA (h*C)/ >~\ (h *Oy DJ+K \

X- ENERGIA FRZ1DJ)ZaNA ODRZUCONEMU ELEKTRONOWI 0 -KAT ROZPROSZENIA

fS) LOGARYTMICZNY DF.PREMF.NT Tf.UMIENLA.

JEST ON MIARĄ DRGAŃ TŁUMIONYCH .. JEST TO WIELKOŚĆ FIZYCZNA CHARAKTERYZUJĄCA. KUCU TŁUMIONY JSST CO LOCARYTM NATURALNY STOLI INKI; IJ W DCI! AMPLI 1 UD ODPOWIADAJĄCYCH CHWILOM i! —t: t2=t-T 2Wn*[B(l)/3<iN I}]    A-ln*{(AA;e do(-{l;))]ĄA«{c d<-|ł(t4.T)))] ;.^n V. dotfji I jll-pT);

A*4n -e doiBTIJośT T 2t-J/k 2t. / •?;(<,' d,; 2)»(fi du 2)1 A-WIELKOŚĆ BEURYM A-WrSPÓI .C 7.YNN7K TŁUMlEMA T-OKRES DRGAŃ

19) DYSPERSJA.    ..    .    ___

iVZKu vma>/łc NIE ZMIENIA SIĘ WRAZ Z DŁUGOŚCIĄ FAT.I TO JEST RÓWNA PRĘDKOŚCI GRUPOWE! V*


ZJAWISKO R/.YCZNK MÓWIĄCE O TYM ZE PRĘDKOŚĆ FAM W DANYM OŚRODKU ZALEŻY OD DŁUGOŚCI FALI.    .    ...

V^/UI)*Vg=dfli/dk= (d«/dM“( dUćk) wt2rJT-2ic’<yf/>.;


!r-2rA    dkAl‘.”2rJ(/. clo 2)

h-!cu-lrS 0. do 2)*Yf+(Ł do (-l))*(dVS d?.>] 1V£W.=Ć=0


i;


Vg=Vt‘-L*(<LV£'dJ.)    v<t=.'-vr <=>

JV£'d>. -ZACHODZI DYSPERSJA OŚRODKOWA iVffd»0 -DYSPERSJA NORMALNA Vp<Vf iVi>d?.<0 -DYSPERSJA ANORMALNA Vg>Vf >R|.r»k'flSĆ {«! ll>OWA JEST TO PRĘDKOŚĆ

>0) DYFUZJA, WSPÓŁCZYNNIK DYFUZJI    .............

)- WSPÓŁCZY^OK DYFUZJI ..(SIATA PROPOKCJONAIKOŚCI W DRAWIE HC3CA) r.ST TO KfLAR A SZYBKOŚCI DYFUZJI W DANYM UKŁADZIE . JES1 10 LICZBA 10 <b

■ _ _ . _* ....... . a .    ' « ■ • j a <•    T ^ 1


DYFUZJA JEST TO TRANSPORT MASY WYWOl-ANY GRADIENTEM STĘŻENIA POT EGA NA. SAMOISTNYM WYRÓWNYWANIUI SE STADNIKÓW W UKŁADACH WIELOSKŁADNIKOWYCH NIEJEDKORODN YCt I.OPISANA JEST PR A WEM f ICa. A ĄV^D’(dq/<k) -MAKROSKOPOWO iM=-lD*V'J.»rdaMx) -MIKROSKOPOWO

arvfj/u r^ /T“VV"C7 *'"7 TT .    i

. kg KTÓRA PttZiiPŁYWAPRZK/. I rn2 W CIĄGI’

V dM/f<lS^(dq/dx)I    *V‘X (L>j=[(n^)/5|*i(rr do CJ/sJ



Wyszukiwarka

Podobne podstrony:
CCF20090622000 1 Prawo przesunięć Wiena dla promieniowania cieplnego ciała doskonale czarnego 2.Jak
minerały5 ystfi Nat M na keją: - długości fali promieniowania. Pojęcie ciała doskonale czarnego [c.
img151 151 gd2iei - monochromatyczne natężenie promieniowania ciała doskonale czarnego, X - długość
skanuj0008 doskonale białe całkowicie odbijają promienie, a przez ciała doskonale przezroczyste prom
page0182 172 Elam 4, 24, 32, 33, 35, 36, 38, 47, 48, 61, 64, 67, 87, 88, 92, 120, 151 Elam i ci
skanuj0009(5) 6 Co - techniczna stała promieniowania ciała doskonale czarnego, [W/(m2 K4)] Prawo Lam
ekonomia067 c a 4 ££)3 ?aa - -mi ci 0^ - 4 pi = tfr 3 ! .. d yf J-0 3 A “ 3 GO czO ci I X Pa
3 LATEK (08) Posłuchaj i popatrz, jak Ala bawi się w „starego niedźwiedzia”. Śpiewaj i pokazuj to, c
DSC00061 (16) Ulicznego, że promieniuję podobnie jak ciało doskonale czarne. Dlatego układ rur Zaopa
T<i/s> x! i/.,ri u (i k j i ci W v.v> ?>c .xyi ci / cM:, ;k± i k*22 Go g 1
CCF20110512000 Prawo Wiena - prawo opisujące promieniowanie elektromagnetyczne emitowane przez ciał
59565 RSCN6159 Widmo promieniowania dla wolframu i ciała doskonale czarnego dało doskonałe czarne T

więcej podobnych podstron