48 Radosław MOREK
Badania realizowane w ramach projektu celowego 6 ZR8 2009 C/07200 „Opracowanie i wdrożenie systemu projektowania technologii obróbki ubytkowej komponentów silników turbinowych z zastosowaniem wspomagania komputerowego” zrealizowanego wraz z Wytwórnią Sprzętu Komunikacyjnego „PZL-Rzeszów"
LITERATURA
[1] AGAPIOU J. S. A., 2005, Methodology to Measure Joint Stiffhess Parameters for Toolholder-Spindle Interfaces, Journal of Manufacturing Systems, 24/1, 13-20.
[2] AL-AHMARI A. M. A., 2007, Predictive machinability models for a selected hard materiał in turning operations, Journal of Materials Processing Technology, 190, 305-311.
[3] BAEK D. K., KO T. J., KIM H. S., 2001, Optimization offeed ratę in a face milling operation using a suiface roughness model, International Journal of Machinę Tools & Manufacture, 41,451-462
[4] BOYLE I., RONG Y., BROWN D. C., 2011, A review and analysis of current computer-aided fixture design approaches, Robotics and Computer-Integrated Manufacturing, 27, 1-12.
[5] Futur Vision lnnovation Realisation, 2007, Research and Development at the Production Technology Center, Berlin.
[6] DAVIM J. P., ANTONIO C. A. C., 2001, Optimization of cutting conditions in machining of aluminium matrix composites using a numerical and experimental model, Journal of Materials Processing Technology, 112, 78-82.
[7] DONG J. Y., FERRERRA P. M., STORI J. A., 2007, Feed-rate optimization with jerk constraints for generating minimum-time trajectories, International Journal of Machinę Tools & Manufacture, 47, 1941-1955.
[8] FENG H. Y., SU N., 2000, Integrated tool path and feed ratę optimization for the finishing machining of 3D piane surfaces, International Journal of Machinę Tools & Manufacture, 40, 1557-1572.
[9] GAOLIANG P., GONDONG W., WENJIAN L., HAIQUAN Y„ 2010, A desktop virtual reality-based interactive modularfixture configuration design system, Computer-Aided Design, 42,432-444.
[10] GARUD S., MARUSICH T„ USUI S., ZAMORANO L„ MALUSICH K.. 2009, Improved Titanium Machining: Modeling and Analysis of5-Axis Tool Paths via Physics-Based Methods, SAE International.
[11] KRAJNIK P., KOPAĆ J., 2004, Modem machining of die and mold tools, Journal of Materials Processing Technology, 543-552
[12] KADIR A. A, XU X., HAMMERLE E., 2010, Virtual machinę tools and virtual machining -A technological review, Robotics and Computer-Integrated Manufacturing.
[13] LI J.G., ZHAO H., YAO Y. X., LIU C. Q., 2008, Off-line optimization on NC machining based on virtual machining, International Journal of Advanced Manufacturing and Technology, 36, 908-917.
[14] IM Al M., KAZEIN G., 2006, Zdroworozsądkowe, niskokosztowe podejście do zarządzania, MT Biznes Sp. z o.o.
[15] MARUSICH T. D., ASKARI E„ Modeling Residua! Stress and Workpiece Quality in Machined Surfaces, Third Wave Systems.
[16] MARUSICH T. D., STEPHENSON D. A., USUI S., LANKALAPALLI S., Modeling Capabilities for Part Distortion Management for Machined Components, Third Wave Systems.
[17] MARUSICH T. D., 2001, Effects of Friction and Cutting Speed on Cutting Force, Third Wave Systems.
[18] MARUSICH T. D., USUI Ś., LANKALAPALLI S., SAINI N., ZAMORANO L., GREVSTAD A., 2006, Residua! Stress Prediction for Part Distortion Modeling, Third Wave Systems, SAE International.
[19] MARUSICH T. D„ USUI S., MA J„ STEPHENSON D. A., Finite Element Modeling ofDrilling Processes with Solid and Indexable Tooling in Metals and Stack-ups, Third Wave Systems.
[20] PENG G., CHEN G., WU C., XIN H„ JIANG Y„ 2011, Applying RBR and CBR to develop a VR based integrated system for machining fixture design, Expert Systems with Applications, 38, 26-38.
[21] PITTALA G. M„ MONNO M., 2011, A new aproach to the prediction of temperaturę of the workpiece offace milling operations ofTi-6AI-4V, Applied Thermal Engineering, 31, 173-180.
[22] SEREMAK A., 2007, TrueMill - optymalne wykorzystanie możliwości CNC, Design News, 3, 22, 38-39.
[23] TIMAR S. D., FAROUKI R. T., 2007, Time-optimal traversal of curvedpaths by Cartesian CNC machines under both constant and speed-dependent axis acceleration bounds, Robotics and Computer-Integrated Manufacturing, 23, 517-532.